论文标题

弱形式平坦和准爱因斯坦歧管的表征

Characterizations Of Weakly Conformally Flat And Quasi Einstein Manifolds

论文作者

Sharma, Ramesh

论文摘要

首先,我们表明一条线和纤维歧管的扭曲产物在且仅当纤维是爱因斯坦时,是弱的保态和准爱因斯坦。接下来,我们对触点(尤其是$ k $ - 连接)进行了表征和分类,riemannian歧管很弱(且双重弱)扁平(双重弱)和Quasi-Einstein($η$ -Einstein)条件。最后,我们在Petrov类型和BACH张量方面提供了具有谐波Weyl张量和非所有人的共形的局部分类和表征,并具有谐波Weyl张量和非所有人的共形(包括封闭式)矢量场的局部分类和表征。

First, we show that a warped product of a line and a fiber manifold is weakly conformally flat and quasi Einstein if and only if the fiber is Einstein. Next, we characterize and classify contact (in particular, $K$-contact) Riemannian manifold satisfying weakly (and doubly weakly) conformally flat and quasi-Einstein ($η$-Einstein) conditions. Finally, we provide local classification and characterization of a semi-Riemannian (including the 4-dimensional spacetime) with harmonic Weyl tensor and a non-homothetic conformal (including closed) vector field, in terms of Petrov types and Bach tensor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源