论文标题

定向图的反向子图

Antidirected subgraphs of oriented graphs

论文作者

Stein, Maya, Zárate-Guerén, Camila

论文摘要

我们表明,每$η> 0 $,每个足够大的$ n $ n $ vertex面向最小半透明的图形D超过$(1 +η)k/2 $,包含每个平衡的反向树,具有$ k $ edges and Bounded tem and Bounded最高度,如果$ k \ geηn$。特别是,这种渐近地证实了长期反向路径和密集挖掘的第一作者的猜想。 此外,我们表明,在相同的设置中,D包含一个足够小的完整图的每个$ k $的反向分区,如果长度为1或2的路径跨越了森林。作为特殊情况,我们可以找到最多$ k $的所有反向循环。 最后,我们解决了Addario-berry,Havet,Linhares Sales,Reed和Thomassé的猜想,用于Digraphs中的反向树木。我们证明,对于所有平衡的反向型树,具有界限最大程度和尺寸线性的$ n $ vertex图表中,这种猜想在$ n $ vertex的图中渐近呈正确。

We show that for every $η>0$ every sufficiently large $n$-vertex oriented graph D of minimum semidegree exceeding $(1 + η) k/2$ contains every balanced antidirected tree with $k$ edges and bounded maximum degree, if $k \ge ηn$. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs. Further, we show that in the same setting, D contains every $k$-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length 1 or 2 span a forest. As a special case, we can find all antidirected cycles of length at most $k$. Finally, we address a conjecture of Addario-Berry, Havet, Linhares Sales, Reed and Thomassé for antidirected trees in digraphs. We show that this conjecture is asymptotically true in $n$-vertex oriented graphs for all balanced antidirected trees of bounded maximum degree and of size linear in $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源