论文标题
高渗透稀土锰的磁性和电性能
Magnetic and Electrical Properties of high-entropy rare-earth manganites
论文作者
论文摘要
提出了对孔掺杂的高渗透稀土锰矿的结构,磁和电子传输特性的详细研究。高注册样品(landprsmeu)$ _ {1-x} $ sr $ _x $ _x $ mno $ _3 $(0 $ \ leq $ \ textit {x} $ \ leq $ 0.5),使用固态技术在\ textiT中的变化,并显示了\ textit的变化,并显示了\ textiT} {pbnm的变化SR替代,归因于公差因子的变化。在样品中观察到具有突出的铁磁秩序,该样品具有菱形结构(\ textit {x} $ \ geq $ 0.3),源自由巡回电子介导的主要双交换机制。此外,与La $ _ {0.7} $ _ {0.7} $ sr $ _ {0.3} $ mno $ _3 $相比,具有\ textIt {x} = 0.3的高渗透样品的居里温度较小,这表明curie温度与降低的Iroc radii radii cardi-ion-ion-ion-ion-ion-iros ressial-iros ressear-ear-ion-ion-ion-iros ressial-carse conte curie之间存在密切的关系。高渗透样品的电阻率大于la $ _ {1-x} $ sr $ _x $ mno $ _3 $的电阻率,由于增强的结构失真,可以将其归因于减少的带宽。对于SR浓度的增加,观察到高透镜样品的磁倍率上升。这些发现考虑了不同稀有美月的构型复杂性,使人们了解了高渗透稀土锰岩的理解。
Detailed investigations of structural, magnetic and electronic transport properties of hole-doped high-entropy rare-earth manganites are presented. The high-entropy samples (LaNdPrSmEu)$_{1-x}$Sr$_x$MnO$_3$ (0$\leq$\textit{x}$\leq$0.5), synthesized using the solid-state technique, show a change in the crystal structure from \textit{Pbnm} to \textit{R-3c} with increasing Sr substitution, attributed to the change in the tolerance factor. Prominent ferromagnetic ordering is observed in the sample with a rhombohedral structure (\textit{x}$\geq$0.3), originating from the dominant double exchange mechanism mediated by itinerant electrons. Further, the Curie temperature is smaller for the high-entropy sample with \textit{x}=0.3, as compared to La$_{0.7}$Sr$_{0.3}$MnO$_3$, suggesting a strong relation between the Curie temperature and the Mn-O-Mn bond angle associated with the reduced ionic radii at the rare-earth site. The electrical resistivity of the high-entropy samples is larger than those of La$_{1-x}$Sr$_x$MnO$_3$, which can be ascribed to the reduced bandwidth due to the enhanced structural distortion. A concomitant rise in magnetoresistance is observed for high-entropy samples with the increase in Sr concentration. These findings considering the configurational complexity of different rare-earths advance the understanding of high-entropy rare earth manganites.