论文标题
在未知环境中具有不同任务密度的未知环境中新的群任务分配算法的比较
A Comparison of New Swarm Task Allocation Algorithms in Unknown Environments with Varying Task Density
论文作者
论文摘要
任务分配是机器人群解决的重要问题,可以通过以分布式方式执行任务来减少任务完成时间。现有的任务分配算法通常假设任务位置和需求的先验知识,或者未能考虑任务的几何分布对算法的完成时间和通信成本的影响。在本文中,我们研究了一个环境,代理必须探索和发现以积极需求的任务,并成功地将自己分配以完成所有此类任务。我们首先提供了用于建模群体的新离散模型。在此理论框架内运行,我们建议针对最初未知环境的两种新任务分配算法 - 一个基于n个点选择,另一个基于虚拟信息素。我们分别分析每种算法,并评估两种算法在密集与稀疏任务分布中的有效性。与征税步行相比,从理论上讲是最佳的觅食,我们的虚拟信息素启发的算法在稀疏到中型任务密度下的速度要快得多,但沟通和代理密集型。我们的网站选择启发的算法也优于稀疏任务密度的征费步行,并且比我们的虚拟信息素算法是一种资源密集的选择。由于两种算法相对于随机步行的性能取决于任务密度,因此我们的结果阐明了任务密度在最初未知环境中选择任务分配算法的重要性。
Task allocation is an important problem for robot swarms to solve, allowing agents to reduce task completion time by performing tasks in a distributed fashion. Existing task allocation algorithms often assume prior knowledge of task location and demand or fail to consider the effects of the geometric distribution of tasks on the completion time and communication cost of the algorithms. In this paper, we examine an environment where agents must explore and discover tasks with positive demand and successfully assign themselves to complete all such tasks. We first provide a new discrete general model for modeling swarms. Operating within this theoretical framework, we propose two new task allocation algorithms for initially unknown environments -- one based on N-site selection and the other on virtual pheromones. We analyze each algorithm separately and also evaluate the effectiveness of the two algorithms in dense vs. sparse task distributions. Compared to the Levy walk, which has been theorized to be optimal for foraging, our virtual pheromone inspired algorithm is much faster in sparse to medium task densities but is communication and agent intensive. Our site selection inspired algorithm also outperforms Levy walk in sparse task densities and is a less resource-intensive option than our virtual pheromone algorithm for this case. Because the performance of both algorithms relative to random walk is dependent on task density, our results shed light on how task density is important in choosing a task allocation algorithm in initially unknown environments.