论文标题
贝叶斯物理学知情的神经网络用于数据同化和野火时空建模
Bayesian Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires
论文作者
论文摘要
我们将物理知情的神经网络(PINN)应用于野火灭火建模问题。我们使用PINN求解级别方程,这是一个部分微分方程,该方程式通过级别集合函数的零级集模型建模。结果是一个PINN,该PINN通过时空结构域传播时模拟了火式前。我们表明,文献中使用的流行优化成本功能可能会导致PINN在模型的消防范围内无法保持时间连续性时,当外源性强迫变量(例如风向)发生极大变化时。因此,我们提出了对优化成本函数的新颖增加,该功能在这些极端变化下改善了时间连续性。此外,我们开发了一种在PINN中执行数据同化的方法,以便将PINN预测用于观察到的壁炉。最后,我们将新方法纳入贝叶斯Pinn(B-Pinn)中,以在消防前预测中提供不确定性定量。这是重要的,因为标准求解器是级别集合方法,并不能自然地提供数据同化和不确定性定量的能力。我们的结果表明,通过我们的新方法,B-Pinn可以在现实世界中使用高质量的不确定性定量产生准确的预测。
We apply the Physics Informed Neural Network (PINN) to the problem of wildfire fire-front modelling. We use the PINN to solve the level-set equation, which is a partial differential equation that models a fire-front through the zero-level-set of a level-set function. The result is a PINN that simulates a fire-front as it propagates through the spatio-temporal domain. We show that popular optimisation cost functions used in the literature can result in PINNs that fail to maintain temporal continuity in modelled fire-fronts when there are extreme changes in exogenous forcing variables such as wind direction. We thus propose novel additions to the optimisation cost function that improves temporal continuity under these extreme changes. Furthermore, we develop an approach to perform data assimilation within the PINN such that the PINN predictions are drawn towards observations of the fire-front. Finally, we incorporate our novel approaches into a Bayesian PINN (B-PINN) to provide uncertainty quantification in the fire-front predictions. This is significant as the standard solver, the level-set method, does not naturally offer the capability for data assimilation and uncertainty quantification. Our results show that, with our novel approaches, the B-PINN can produce accurate predictions with high quality uncertainty quantification on real-world data.