论文标题

使用荟萃分析的先验来整合外部信息以进行研究评估

Using meta-analytic priors to incorporate external information for study evaluation

论文作者

Welz, Thilo, Knop, Eric, Konietschke, Frank, Hardenberg, Jan-Hendrik B., Pauly, Markus, Röver, Christian

论文摘要

背景:COVID-19大流行对世界各地的健康,日常生活和经济学产生了深远的影响。与Covid-19感染有关的一个重要并发症是急性肾脏损伤。最近在德国柏林三级护理中心多个部位治疗的COVID-19患者的观察队列研究确定了(严重)急性肾脏损伤的危险因素。由于一项研究推断出的结果可能很棘手,因此我们通过包括有关急性肾损伤和Covid-19的其他外部信息来验证这些发现并可能调整结果。 方法:我们通过贝叶斯荟萃分析将主要研究结果与其他试验合成。外部信息用于构建预测分布并得出感兴趣研究的后验估计。我们专注于急性肾脏损伤发展的各种重要潜在危险因素,例如机械通气,使用加压剂,高血压,肥胖,糖尿病,性别和吸烟。 结果:我们的结果表明,根据数据中的异质性程度,估计的效应大小可以通过包含外部数据进行大量完善。我们的研究结果证实,机械通气和使用加压剂是COVID-19患者急性肾脏损伤发展的重要危险因素。高血压似乎也是不容忽视的危险因素。收缩重量在很大程度上取决于模型中估计的异质性。 结论:我们的工作表明,如何使用贝叶斯荟萃分析方法使用外部信息来调整主要研究的结果。从外部研究中借入多少信息将取决于模型中存在的异质性程度。

Background: The COVID-19 pandemic has had a profound impact on health, everyday life and economics around the world. An important complication that can arise in connection with a COVID-19 infection is acute kidney injury. A recent observational cohort study of COVID-19 patients treated at multiple sites of a tertiary care center in Berlin, Germany identified risk factors for the development of (severe) acute kidney injury. Since inferring results from a single study can be tricky, we validate these findings and potentially adjust results by including external information from other studies on acute kidney injury and COVID-19. Methods: We synthesize the results of the main study with other trials via a Bayesian meta-analysis. The external information is used to construct a predictive distribution and to derive posterior estimates for the study of interest. We focus on various important potential risk factors for acute kidney injury development such as mechanical ventilation, use of vasopressors, hypertension, obesity, diabetes, gender and smoking. Results: Our results show that depending on the degree of heterogeneity in the data the estimated effect sizes may be refined considerably with inclusion of external data. Our findings confirm that mechanical ventilation and use of vasopressors are important risk factors for the development of acute kidney injury in COVID-19 patients. Hypertension also appears to be a risk factor that should not be ignored. Shrinkage weights depended to a large extent on the estimated heterogeneity in the model. Conclusions: Our work shows how external information can be used to adjust the results from a primary study, using a Bayesian meta-analytic approach. How much information is borrowed from external studies will depend on the degree of heterogeneity present in the model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源