论文标题

研究受伤的人肺的患者特异性计算模型中研究招募/降级动力学的方法

An approach to study recruitment/derecruitment dynamics in a patient-specific computational model of an injured human lung

论文作者

Geitner, Carolin M., Becher, Tobias, Frerichs, Inéz, Weiler, Norbert, Bates, Jason H. T., Wall, Wolfgang A.

论文摘要

我们为患病人类肺的基于物理学的计算建模提供了一种新方法。我们的主要对象是开发一个模型,该模型采取了新的步骤,该模型将气道募集/雷神的动力学结合到解剖上精确的呼吸系统力学模型,并将这些动力学与气道尺寸的关系以及衬里流体的生物物理特性之间的关系。我们方法的重要性在于,它有可能可以更准确地预测肺部机械应力焦点的位置,因为正是在这些位置,人们认为受伤会出现并传播。我们将模型与来自急性呼吸遇险综合征(ARDS)患者的数据匹配,以证明该模型以患者特异性方式揭示ARDS的潜在危险的潜力。为此,从医疗CT图像中提取了肺的特定几何形状及其异质损伤模式。该模型的机械行为是使用测量的通风数据为患者的呼吸机械师量身定制的。在回顾性模拟的各种临床执行的压力驱动通风剖面,该模型充分再现了患者中测量的临床数量,例如潮汐体积和胸膜压力变化。该模型还表现出生理合理的肺募集动力学,并具有空间分辨率,以研究局部机械量(例如肺泡菌株)。这种建模方法提高了我们在计算机中进行特定于患者的研究的能力,为可以优化患者预后的个性化疗法开辟了道路。

We present a new approach for physics-based computational modeling of diseased human lungs. Our main object is the development of a model that takes the novel step of incorporating the dynamics of airway recruitment/de-recruitment into an anatomically accurate, spatially resolved model of respiratory system mechanics, and the relation of these dynamics to airway dimensions and the biophysical properties of the lining fluid. The importance of our approach is that it potentially allows for more accurate predictions of where mechanical stress foci arise in the lungs, since it is at these locations that injury is thought to arise and propagate from. We match the model to data from a patient with Acute Respiratory Distress Syndrome (ARDS) to demonstrate the potential of the model for revealing the underlying derangements in ARDS in a patient-specific manner. To achieve this, the specific geometry of the lung and its heterogeneous pattern of injury are extracted from medical CT images. The mechanical behavior of the model is tailored to the patient's respiratory mechanics using measured ventilation data. In retrospective simulations of various clinically performed, pressure-driven ventilation profiles, the model adequately reproduces clinical quantities measured in the patient such as tidal volume and change in pleural pressure. The model also exhibits physiologically reasonable lung recruitment dynamics and has the spatial resolution to allow the study of local mechanical quantities such as alveolar strains. This modeling approach advances our ability to perform patient-specific studies in silico, opening the way to personalized therapies that will optimize patient outcomes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源