论文标题

正弦模型的非热固定点的异常缩放

Anomalous scaling at non-thermal fixed points of the sine-Gordon model

论文作者

Heinen, Philipp, Mikheev, Aleksandr N., Gasenzer, Thomas

论文摘要

根据正弦模型,我们将非热固定点的理论扩展到异常缓慢的通用缩放动力学情况。这需要从非扰动的两粒子不可减至的有效动作中衍生一个动力学方程,以使标量场的动量占用,从而重新与一系列类似于近代领先顺序的大型$ n $扩展的封闭环链。分析了所得的动力学方程,以在时空中可能的缩放溶液,其特征是一组通用缩放指数,并编码自相似的传输到低臂法。假设动量占用分布以表现出缩放形式,我们可以通过确定对散射积分和功率计数的主导贡献来确定指数。如果该场在余弦电位的许多孔中表现出强烈的变化,则散射积分由许多准粒子的散射主导,因此每个参与模式的动量仅受到弱约束。值得注意的是,在这种情况下,与波动湍流的级联反对的波动级联相反,这与动量空间中的局部运输相对应,我们的结果表明,这里的动力学散射主要由相当非本地过程的过程主导,该过程对应于位置空间中的空间遏制。相应的通用相关功能在动量和位置空间中证实了这一结论。在随附的工作缩放属性中进行的数值模拟与此处预测的属性相近。

We extend the theory of non-thermal fixed points to the case of anomalously slow universal scaling dynamics according to the sine-Gordon model. This entails the derivation of a kinetic equation for the momentum occupancy of the scalar field from a non-perturbative two-particle irreducible effective action, which re-sums a series of closed loop chains akin to a large-$N$ expansion at next-to-leading order. The resulting kinetic equation is analyzed for possible scaling solutions in space and time that are characterized by a set of universal scaling exponents and encode self-similar transport to low momenta. Assuming the momentum occupancy distribution to exhibit a scaling form we can determine the exponents by identifying the dominating contributions to the scattering integral and power counting. If the field exhibits strong variations across many wells of the cosine potential, the scattering integral is dominated by the scattering of many quasiparticles such that the momentum of each single participating mode is only weakly constrained. Remarkably, in this case, in contrast to wave turbulent cascades, which correspond to local transport in momentum space, our results suggest that kinetic scattering here is dominated by rather non-local processes corresponding to a spatial containment in position space. The corresponding universal correlation functions in momentum and position space corroborate this conclusion. Numerical simulations performed in accompanying work yield scaling properties close to the ones predicted here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源