论文标题
通过元学习朝着哈密顿代表的跨领域概括
Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning
论文作者
论文摘要
深度学习物理学的最新进展专注于通过将物理先验或归纳偏见纳入神经网络来发现目标系统的共享表示。尽管有效,但这些方法仅限于系统领域,在该系统域中,系统类型保持一致,因此无法确保适应由不同法律支配的新的或看不见的物理系统。例如,在质量弹簧系统上训练的神经网络无法保证对两体系统或具有不同物理定律的任何其他系统的行为的准确预测。在这项工作中,我们通过针对哈密顿动力学领域的跨域概括来取得重大飞跃。我们使用图形神经网络(GNN)对系统进行建模,并采用元学习算法来使模型能够获得有关系统分布的经验,并使其适应新的物理学。我们的方法旨在学习一个统一的哈密顿表示,该表示可以在多个系统领域中推广,从而克服了系统特定模型的局限性。我们证明,元训练的模型捕获了跨不同物理领域一致的广义汉密尔顿表示。总体而言,通过使用元学习,我们提供了一个实现跨领域概括的框架,从而为统一模型提供了一步,以通过深度学习来理解各种动态系统。
Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network (GNN) and employ a meta learning algorithm to enable the model to gain experience over a distribution of systems and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. We demonstrate that the meta-trained model captures the generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.