论文标题
$ b \ to k^*τ^+τ^ - $的新物理学
New physics in $B \to K^* τ^+ τ^-$: A model independent analysis
论文作者
论文摘要
在这项工作中,我们考虑了当前$ b \对s \ ell^+ \ ell^ - $($ \ ell = e,\,μ$)对几个$ b \ to k^*τ^+τ^ - $可观察物的测量值,假设可能的新物理学可以具有通用的通用物理,以及nonnonnonnonics and nonnonnoniveral couplons to Leptons couplons couplons couplons。对于新物理解决方案,这些解决方案非常适合所有$ b \ s \ ell^+ \ ell^ - $数据,我们打算识别与标准模型(SM)预测较大偏差的可观察到物,并区分各种新物理解决方案。为此,我们将$ b \ to k^*τ^+τ^ - $分支分数,$ k^* $纵向分数$ f_l $,tau tau tau tha tau the-backward backward backward $ a_ {fb} $以及在$ p_i^{(')} $基础上的$ p_i^{(')} $基础中优化的可观察力。此外,我们构建了这些tau可观察物与它们的$ b \ to k^*μ^+μ^ - $ decay的$τ-$ Lepton-Fravor差异($ q^{τμ} $)。此外,我们还考虑了所有这些观察到的Lepton-Flavory比率($ r^{τμ} $)。我们发现,当前数据允许在许多可观察物中与SM值的偏差范围从25%到一个数量级。例如,$ q^{τμ} _ {p_3} $和$ q^{τμ} _ {p'_8} $可观察到的幅度可以增强到一个数量级,同时增强$ q^{fb} $ { $ r^{τμ} _ {k^*} $和$ \ sim $ 25%在$ r^{τμ} _ {a_ {a_ {fb}} $中。此外,$ b \与k^*τ^+τ^ - $的分支比率可抑制高达25%。这些可观察物的精确度量也可以区分许多新的物理解决方案。
In this work we consider the implications of current $b \to s \ell^+ \ell^-$ ($\ell=e,\,μ$) measurements on several $B \to K^* τ^+ τ^-$ observables under the assumption that the possible new physics can have both universal as well as nonuniversal couplings to leptons. For new physics solutions which provide a good fit to all $b \to s \ell^+ \ell^-$ data, we intend to identify observables with large deviations from the Standard Model (SM) predictions as well as to discriminate between various new physics solutions. For this we consider the $B \to K^* τ^+ τ^-$ branching fraction, the $K^*$ longitudinal fraction $f_L$, the tau forward-backward asymmetry $A_{FB}$ and the optimized observables in the $P_i^{(')}$ basis. Further, we construct the $τ- μ$ lepton-flavor differences ($Q^{τμ}$) between these tau observables and their muonic counterparts in $B \to K^* μ^+ μ^-$ decay. Moreover, we also consider lepton-flavor ratios ($R^{τμ}$) of all of these observables. We find that the current data allows for deviations ranging from 25% up to an order of magnitude from the SM value in a number of observables. For e.g., the magnitudes of $Q^{τμ}_{P_3}$ and $Q^{τμ}_{P'_8}$ observables can be enhanced up to an order of magnitude, a twofold enhancement in $Q^{τμ}_{A_{FB}}$ is possible along with $\sim$50% enhancement in $R^{τμ}_{K^*}$ and $\sim$25% in $R^{τμ}_{A_{FB}}$. Moreover, the branching ratio of $B \to K^* τ^+ τ^-$ can be suppressed up to 25%. A precise measurement of these observables can also discriminate between a number of new physics solutions.