论文标题

MMBENCH:基准测试端到端多模式DNN并了解其硬件软件含义

MMBench: Benchmarking End-to-End Multi-modal DNNs and Understanding Their Hardware-Software Implications

论文作者

Xu, Cheng, Hou, Xiaofeng, Liu, Jiacheng, Li, Chao, Huang, Tianhao, Zhu, Xiaozhi, Niu, Mo, Sun, Lingyu, Tang, Peng, Xu, Tongqiao, Cheng, Kwang-Ting, Guo, Minyi

论文摘要

AI技术的各种大数据和进步的爆炸性增长催化了一种新型的工作负载,称为多模式DNNS。多模式的DNN能够解释和推理多种模式的信息,从而使它们更适用于现实世界中的AI场景。在最近的研究中,在从传统的多媒体系统到新兴的自主边缘系统的各种分布式计算应用中,多模式DNN优于最佳的Uni-Modal DNN。然而,尽管它们的重要性和优越性,但研究的关注非常有限,以了解多模式DNN的特征及其对当前计算软件/硬件平台的影响。现有的基准测试要么靶向单模式DNN,要么仅关注多模式DNN的算法特性。缺乏代表性的基准套件,可提供多模式网络的全面系统和体系结构分析。 为了促进对这些多模式DNN工作负载并促进相关研究的理解,我们提出了MMBench,这是一个开源的,端到端的基准套件,该套件由一组现实世界中的多模式DNN工作负载和相关性能指标进行评估。然后,我们使用MMBench对多模式DNN的特征进行深入分析。我们证明了它们的独特特征,即清晰的多阶段执行,频繁同步和高异质性,从而将它们与常规的单模式DNN区分开。最后,我们进行了案例研究,并将基准扩展到边缘设备。我们希望我们的工作可以为未来的软件/硬件设计和优化提供见解,以支持云和边缘计算平台上的多模式DNN。

The explosive growth of various types of big data and advances in AI technologies have catalyzed a new type of workloads called multi-modal DNNs. Multi-modal DNNs are capable of interpreting and reasoning about information from multiple modalities, making them more applicable to real-world AI scenarios. In recent research, multi-modal DNNs have outperformed the best uni-modal DNN in a wide range of distributed computing applications from traditional multimedia systems to emerging autonomous edge systems. However, despite their importance and superiority, very limited research attention has been devoted to understand the characteristics of multi-modal DNNs and their implications on current computing software/hardware platforms. Existing benchmarks either target uni-modal DNNs or only focus on the algorithm characteristics of multi-modal DNNs. There lacks representative benchmark suites that provide comprehensive system and architecture level analysis of multi-modal networks. To advance the understanding of these multi-modal DNN workloads and facilitate related research, we present MMBench, an open-source, end-to-end benchmark suite consisting of a set of real-world multi-modal DNN workloads with relevant performance metrics for evaluation. We then use MMBench to conduct an in-depth analysis on the characteristics of multi-modal DNNs. We demonstrate their unique characteristics of clear multi-stage execution, frequent synchronization and high heterogeneity, which distinguish them from conventional uni-modal DNNs. Finally, we conduct a case study and extend our benchmark to edge devices. We hope that our work can provide insights for future software/hardware design and optimization to underpin multi-modal DNNs on both cloud and edge computing platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源