论文标题
决定性纯对的奇异性
Singularities of determinantal pure pairs
论文作者
论文摘要
让$ x $成为一个普遍的确定性仿射品种,在一个特征$ p \ geq 0 $和$ p \ subset x $的完美领域中,是$ \ mathrm {cl}(x)\ cong \ mathbb {z} $的标准prime Divisor Generator。我们证明,如果$ p> 0 $,并且如果$(x,p)$纯粹是$ f $ - $(x,p)$纯粹是log terminal(plt),则如果$ p = 0 $ p = 0 $和$(x,p)$是log $ $ \ mathbb {q} $ - gorenstein。通常,使用Z. Zhuang和S. Lyu的最新结果,我们表明$(x,p)$是plt-type的,即,有一个$ \ mathbb {q} $ - divisor $Δ$,系数为$ [0,1)$,例如$(x,p+δ)$ plt。
Let $X$ be a generic determinantal affine variety over a perfect field of characteristic $p \geq 0$ and $P \subset X$ be a standard prime divisor generator of $\mathrm{Cl}(X) \cong \mathbb{Z}$. We prove that the pair $(X,P)$ is purely $F$-regular if $p>0$ and so that $(X,P)$ is purely log terminal (PLT) if $p=0$ and $(X,P)$ is log $\mathbb{Q}$-Gorenstein. In general, using recent results of Z. Zhuang and S. Lyu, we show that $(X,P)$ is of PLT-type, i.e. there is a $\mathbb{Q}$-divisor $Δ$ with coefficients in $[0,1)$ such that $(X,P+Δ)$ is PLT.