论文标题

决定性纯对的奇异性

Singularities of determinantal pure pairs

论文作者

Carvajal-Rojas, Javier, Vilpert, Arnaud

论文摘要

让$ x $成为一个普遍的确定性仿射品种,在一个特征$ p \ geq 0 $和$ p \ subset x $的完美领域中,是$ \ mathrm {cl}(x)\ cong \ mathbb {z} $的标准prime Divisor Generator。我们证明,如果$ p> 0 $,并且如果$(x,p)$纯粹是$ f $ - $(x,p)$纯粹是log terminal(plt),则如果$ p = 0 $ p = 0 $和$(x,p)$是log $ $ \ mathbb {q} $ - gorenstein。通常,使用Z. Zhuang和S. Lyu的最新结果,我们表明$(x,p)$是plt-type的,即,有一个$ \ mathbb {q} $ - divisor $Δ$,系数为$ [0,1)$,例如$(x,p+δ)$ plt。

Let $X$ be a generic determinantal affine variety over a perfect field of characteristic $p \geq 0$ and $P \subset X$ be a standard prime divisor generator of $\mathrm{Cl}(X) \cong \mathbb{Z}$. We prove that the pair $(X,P)$ is purely $F$-regular if $p>0$ and so that $(X,P)$ is purely log terminal (PLT) if $p=0$ and $(X,P)$ is log $\mathbb{Q}$-Gorenstein. In general, using recent results of Z. Zhuang and S. Lyu, we show that $(X,P)$ is of PLT-type, i.e. there is a $\mathbb{Q}$-divisor $Δ$ with coefficients in $[0,1)$ such that $(X,P+Δ)$ is PLT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源