论文标题

通过学习从其他修订任务中编辑的位置来改善迭代文本修订

Improving Iterative Text Revision by Learning Where to Edit from Other Revision Tasks

论文作者

Kim, Zae Myung, Du, Wanyu, Raheja, Vipul, Kumar, Dhruv, Kang, Dongyeop

论文摘要

迭代文本修订可以通过修复语法错误,重新设计更好的可读性或上下文适当性或在整个文档中重新组织句子结构来提高文本质量。最近的研究重点是理解和分类从人称文本的迭代修订过程中的不同类型的编辑,而不是为迭代文本修订构建准确稳健的系统。在这项工作中,我们旨在构建一个端到端的文本修订系统,该系统可以通过明确检测可编辑的跨度(wery-to-edit)具有相应的编辑意见,然后指示修订模型来修订检测到的编辑跨度,从而迭代地生成有用的编辑。利用其他相关文本编辑NLP任务的数据集,结合了可编辑跨度的规范,使我们的系统更准确地对迭代文本改进的过程进行了建模,这是经验结果和人类评估的证明。我们的系统在我们的文本修订任务和其他标准文本修订任务上的先前基线大大优于先前的基准,包括语法错误校正,文本简化,句子融合和样式传输。通过广泛的定性和定量分析,我们在编辑意图和编写质量之间建立了至关重要的联系,以及对迭代文本修订的更好的计算建模。

Iterative text revision improves text quality by fixing grammatical errors, rephrasing for better readability or contextual appropriateness, or reorganizing sentence structures throughout a document. Most recent research has focused on understanding and classifying different types of edits in the iterative revision process from human-written text instead of building accurate and robust systems for iterative text revision. In this work, we aim to build an end-to-end text revision system that can iteratively generate helpful edits by explicitly detecting editable spans (where-to-edit) with their corresponding edit intents and then instructing a revision model to revise the detected edit spans. Leveraging datasets from other related text editing NLP tasks, combined with the specification of editable spans, leads our system to more accurately model the process of iterative text refinement, as evidenced by empirical results and human evaluations. Our system significantly outperforms previous baselines on our text revision tasks and other standard text revision tasks, including grammatical error correction, text simplification, sentence fusion, and style transfer. Through extensive qualitative and quantitative analysis, we make vital connections between edit intentions and writing quality, and better computational modeling of iterative text revisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源