论文标题

潘多拉(Pandora

Pandora's Problem with Nonobligatory Inspection: Optimal Structure and a PTAS

论文作者

Beyhaghi, Hedyeh, Cai, Linda

论文摘要

魏茨曼(Weitzman)将潘多拉(Pandora)的盒子问题作为一个数学搜索模型,并以检查成本为顺序搜索,其中允许搜索者从$ n $替代方案之一中选择奖品。几十年后,多瓦尔(Doval)引入了该问题的紧密版本,搜索者不需要产生替代方案的检查成本,并且可以不受影响。与原始问题不同,事实证明,对非渗透检查变体的最佳解决方案被证明需要适应性,并且通过[FLL22]的最新工作,发现最佳解决方案是NP-HARD。 我们的第一个主要结果是对最佳政策的结构表征:我们表明,最佳策略只遵循两个不同的预定顺序,最多一次从一个到另一个。我们的第二个主要结果是多项式时间近似方案(PTA)。我们的证明涉及利用我们最佳的两相结构开发的框架的新颖还原。此外,我们表明潘多拉(Pandora)在非渗透检查中的问题属于NP,通过使用[FLL22]的硬度结果,可以解决问题的计算复杂性类别。最后,我们提供了一个紧密的0.8近似值和新的证明,用于提交策略[BK19](非正式地,非适应性策略集),用于一般的分布类别,以前仅用于离散和有限分布[GMS08]。

Weitzman introduced Pandora's box problem as a mathematical model of sequential search with inspection costs, in which a searcher is allowed to select a prize from one of $n$ alternatives. Several decades later, Doval introduced a close version of the problem, where the searcher does not need to incur the inspection cost of an alternative, and can select it uninspected. Unlike the original problem, the optimal solution to the nonobligatory inspection variant is proved to need adaptivity, and by recent work of [FLL22], finding the optimal solution is NP-hard. Our first main result is a structural characterization of the optimal policy: We show there exists an optimal policy that follows only two different pre-determined orders of inspection, and transitions from one to the other at most once. Our second main result is a polynomial time approximation scheme (PTAS). Our proof involves a novel reduction to a framework developed by [FLX18], utilizing our optimal two-phase structure. Furthermore, we show Pandora's problem with nonobligatory inspection belongs to class NP, which by using the hardness result of [FLL22], settles the computational complexity class of the problem. Finally, we provide a tight 0.8 approximation and a novel proof for committing policies [BK19] (informally, the set of nonadaptive policies) for general classes of distributions, which was previously shown only for discrete and finite distributions [GMS08].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源