论文标题

使用连贯的ISING机器用于NOMA系统的高速资源分配算法

High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine for NOMA Systems

论文作者

Otsuka, Teppei, Li, Aohan, Takesue, Hiroki, Inaba, Kensuke, Aihara, Kazuyuki, Hasegawa, Mikio

论文摘要

非正交多访问(NOMA)技术对于在下一代无线通信中达到高数据速率很重要。充分利用NOMA技术有效性的主要挑战是优化资源分配(RA),例如渠道和功率。但是,此RA优化问题是NP-HARD,并且获得低计算复杂性算法的溶液的良好近似并不容易。为了克服这个问题,我们提出了基于NOMA系统中通道分配的基于ISING机器(CIM)的优化方法。 CIM是一个ISIN系统,可以通过基于相互连接的光子神经网络操作优化算法来提供公平的近似解决方案,以高速(毫秒)的高速优化问题(毫秒)组合。使用CIM的仿真模型评估了我们提出的方法的性能。我们将提出方法的性能与模拟退火,一种常规的核对配对方案,基于Q学习的方案和详尽的搜索方案进行了比较。仿真结果表明,我们所提出的方法在速度和达到的最佳解决方案方面表现出色。

Non-orthogonal multiple access (NOMA) technique is important for achieving a high data rate in next-generation wireless communications. A key challenge to fully utilizing the effectiveness of the NOMA technique is the optimization of the resource allocation (RA), e.g., channel and power. However, this RA optimization problem is NP-hard, and obtaining a good approximation of a solution with a low computational complexity algorithm is not easy. To overcome this problem, we propose the coherent Ising machine (CIM) based optimization method for channel allocation in NOMA systems. The CIM is an Ising system that can deliver fair approximate solutions to combinatorial optimization problems at high speed (millisecond order) by operating optimization algorithms based on mutually connected photonic neural networks. The performance of our proposed method was evaluated using a simulation model of the CIM. We compared the performance of our proposed method to simulated annealing, a conventional-NOMA pairing scheme, deep Q learning based scheme, and an exhaustive search scheme. Simulation results indicate that our proposed method is superior in terms of speed and the attained optimal solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源