论文标题
关于与随机单词相关的年轻图的形状收敛速率
On the rate of convergence of the shape of Young diagrams associated with random words
论文作者
论文摘要
除了统一的情况外,我们重新审视了与随机单词相关的RSK年轻图的累积形状收敛的某些方面,从而获得了Kolmogorov距离的收敛速率。由于图表的顶行的长度是该单词最长增加子序列的长度,因此随后相应的速率结果。然后将其扩展到两个或多个随机词中最长常见的长度和增加子序列。
We revisit, beyond the uniform case, some aspects of the convergence of the cumulative shape of the RSK Young diagrams associated with random words, obtaining rates of convergence in Kolmogorov's distance. Since the length of the top row of the diagrams is the length of the longest increasing subsequences of the word, a corresponding rate result follows. This is then extended to the length of the longest common and increasing subsequences in two or more random words.