论文标题
广义SASA-SASUMA方程的Darboux转换和孤子解决方案
Darboux transformation and soliton solutions of the generalized Sasa-Satsuma equation
论文作者
论文摘要
SASA-SATSUMA方程是一种高阶非线性Schrödinger方程,是一个重要的集成方程,它显示光纤中飞秒脉冲的传播。在本文中,我们研究了广义的SASA-SATSUMA(GSS)方程。构建了用于聚焦和散热性GSS方程的Darboux变换(DT)。通过使用DT,得出了用于广义SASA-SATSUMA方程的各种孤子溶液,包括驼峰型,呼吸型和周期性孤子。分析了这些孤子溶液的动力学特性和渐近行为。获得了无限的保存法律和GSS方程的保守量。
The Sasa-Satsuma equation, a higher-order nonlinear Schrödinger equation, is an important integrable equation, which displays the propagation of femtosecond pulses in optical fibers. In this paper, we investigate a generalized Sasa-Satsuma(gSS) equation. The Darboux transformation(DT) for the focusing and defocusing gSS equation is constructed. By using the DT, various of soliton solutions for the generalized Sasa-Satsuma equation are derived, including hump-type, breather-type and periodic soliton. Dynamics properties and asymptotic behavior of these soliton solutions are analyzed. Infinite number conservation laws and conserved quantities for the gSS equation are obtained.