论文标题

合并极性现场数据以改善太阳耀斑预测

Incorporating Polar Field Data for Improved Solar Flare Prediction

论文作者

Aktukmak, Mehmet, Sun, Zeyu, Bobra, Monica, Gombosi, Tamas, Manchester, Ward B., Chen, Yang, Hero, Alfred

论文摘要

在本文中,我们考虑合并与太阳的北极场和南极田间强度相关的数据,以使用机器学习模型来提高太阳耀斑预测的性能。当用来补充来自太阳光谱磁场的活动区域的局部数据时,极性场数据为预测变量提供了全局信息。尽管以前已经提出过这样的全局特征来预测下一个太阳周期的强度,但在本文中,我们建议使用它们来帮助对单个太阳耀斑进行分类。我们使用HMI数据进行实验,该数据采用四种不同的机器学习算法来利用极地现场信息。此外,我们提出了专家模型的新型概率混合物,该模型可以简单有效地合并极性现场数据,并通过最新的太阳耀斑预测算法(例如复发性神经网络(RNN))提供PAR预测性能。我们的实验结果表明,极性场数据对太阳耀斑预测的有用性,这可以提高Heidke技能得分(HSS2)多达10.1%。

In this paper, we consider incorporating data associated with the sun's north and south polar field strengths to improve solar flare prediction performance using machine learning models. When used to supplement local data from active regions on the photospheric magnetic field of the sun, the polar field data provides global information to the predictor. While such global features have been previously proposed for predicting the next solar cycle's intensity, in this paper we propose using them to help classify individual solar flares. We conduct experiments using HMI data employing four different machine learning algorithms that can exploit polar field information. Additionally, we propose a novel probabilistic mixture of experts model that can simply and effectively incorporate polar field data and provide on-par prediction performance with state-of-the-art solar flare prediction algorithms such as the Recurrent Neural Network (RNN). Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源