论文标题

使用$ rt $搅拌术语的非最小$ f(r,t)$重力理论中的通货膨胀宇宙学

Inflationary Cosmology in a non-minimal $f(R,T)$ gravity theory using a $RT$ mixing term

论文作者

Sarkar, Payel, Ashmita, Das, Prasanta Kumar

论文摘要

We investigate a class of inflationary models in modified gravity theories which contain a non-minimal coupling between gravity and a scalar field $ϕ$ (inflaton) as $f(R,T)=R \bigl(1+α+ κ^4 βT \bigr)+κ^2γT $ where $κ^2=8πG$ where $G$ is the Newton's constant.我们考虑形式的两个加量电势(i)$ v = v_0 \ bigl(1 +\ lnϕ \ bigr)$和(ii)$ v_0 \ frac {λϕ^p} {1 +λϕ^p} $。对于一系列潜在参数,我们探索了三类重力参数的约束,即($α$,$β$和$γ$) - (i)$β\ neq \ neq0 $,$α=γ= 0 $ ($ rt $混合项以及$ t $和$ r $ enter)和(iii)$γ= 0 $,$α\ neq0 $,$β\ neq \ neq0 $($ rt $混合项以及$ r $ $ term)的上述两个潜力。包含$ RT $混合项提供标量频谱索引$ n_s $最高$3σ$ Planck数据的限制,即$ n_s = 0.9649 \ pm0.0042 $,以及张量与量表$ $ r <0.106 $和e-fold the e-fold参数$ 40 <n <n <70 <70 $。

We investigate a class of inflationary models in modified gravity theories which contain a non-minimal coupling between gravity and a scalar field $ϕ$ (inflaton) as $f(R,T)=R \bigl(1+α+ κ^4 βT \bigr)+κ^2γT $ where $κ^2=8πG$ where $G$ is the Newton's constant. We consider two inflaton potentials of the form (i) $V = V_0 \bigl(1 +\lnϕ \bigr)$ and (ii) $V_0\frac{λϕ^p}{1+λϕ^p}$. For a range of potential parameters, we explored the constraints on modified gravity parameters i.e. ($α$, $β$ and $γ$) in three categories -- (i) $β\neq0$, $α=γ=0$ (considering $R$ and $RT$ mixing terms), (ii) $α=0$, $γ\neq0$, $β\neq 0$ ($RT$ mixing term along with $T$ and $R$ terms) and (iii) $γ=0$, $α\neq0$, $β\neq0$ ($RT$ mixing term along with $R$ term) for the above two potentials. The inclusion of $RT$ mixing term provides the scalar spectral index $n_s$ up to $3σ$ limit of PLANCK data, which is $n_s=0.9649\pm0.0042$ as well as the tensor-to-scalar ratio $r<0.106$ and the e-fold parameter $40<N<70$ for both the potentials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源