论文标题

关于多部分纠缠分布开关的分析

On the Analysis of a Multipartite Entanglement Distribution Switch

论文作者

Nain, Philippe, Vardoyan, Gayane, Guha, Saikat, Towsley, Don

论文摘要

我们研究了一个量子开关,该量子开关将最大纠缠的多部分状态分发到一组用户。纠缠切换过程需要两个步骤:首先,每个用户尝试在自身与开关之间生成二分的纠缠;其次,该交换机执行本地操作和测量,以为一组用户创建多部分纠缠。在这项工作中,我们研究了该系统的一个简单变体,其中开关具有无限的内存,将用户连接到交换机的链接是相同的。此外,我们假设所有量子状态(如果成功产生)具有完美的保真度,而这种腐蚀性则可以忽略不计。这个问题的表达对于几个分布式量子应用来说是感兴趣的,而这项工作的技术方面导致排队理论中的新贡献。通过广泛使用Lyapunov函数,我们为系统的稳定性提供了必要的和充分的条件,并为开关容量和内存中预期的Qubits数量提供了封闭形式的表达式。

We study a quantum switch that distributes maximally entangled multipartite states to sets of users. The entanglement switching process requires two steps: first, each user attempts to generate bipartite entanglement between itself and the switch; and second, the switch performs local operations and a measurement to create multipartite entanglement for a set of users. In this work, we study a simple variant of this system, wherein the switch has infinite memory and the links that connect the users to the switch are identical. Further, we assume that all quantum states, if generated successfully, have perfect fidelity and that decoherence is negligible. This problem formulation is of interest to several distributed quantum applications, while the technical aspects of this work result in new contributions within queueing theory. Via extensive use of Lyapunov functions, we derive necessary and sufficient conditions for the stability of the system and closed-form expressions for the switch capacity and the expected number of qubits in memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源