论文标题
应用物理学的有界分布函数,尤其是在深层温度下的电子设备模拟
Bounded Distribution Functions for Applied Physics, Especially Electron Device Simulation at Deep-Cryogenic Temperatures
论文作者
论文摘要
数值下水流和溢出是针对低于50 K的温度划定建模和仿真基础架构的主要障碍。扩展数字精度在计算上是强化的,因此最好避免使用。这些数值挑战的根本原因在于费米 - 迪拉克,bose-instein和boltzmann分布功能。为了解决其极端值,提出了有界的分布函数,这些函数在给定的精度上在数字上是安全的,但与物理级别的标准分布相同。这些功能可以帮助开发电子设备模型和TCAD软件,以默认的双重精度处理深层温度,从而跟上快速的实验进步。更广泛地说,它们也可以应用于具有类似数值挑战的应用物理学的其他分支。
Numerical underflow and overflow are major hurdles for rolling-out the modeling and simulation infrastructure for temperatures below about 50 K. Extending the numeric precision is computationally intensive and thus best avoided. The root cause of these numerical challenges lies in the Fermi-Dirac, Bose-Einstein, and Boltzmann distribution functions. To tackle their extreme values, bounded distribution functions are proposed which are numerically safe in a given precision, yet identical to the standard distributions at the physical level. These functions can help to develop electron device models and TCAD software handling deep-cryogenic temperatures in the default double precision, to keep pace with the rapid experimental progress. More broadly, they can apply to other branches of applied physics with similar numerical challenges as well.