论文标题
恢复时间相关的阻尼和波方程的非线性项的逆问题
Inverse problem of recovering the time-dependent damping and nonlinear terms for wave equations
论文作者
论文摘要
在本文中,我们考虑了恢复riemannian歧管上半线性波方程的时间依赖性非线性和阻尼项的反边界问题。卡尔曼估计和高斯梁的构造以及高阶线性化分别用于得出恢复系数的唯一性结果。
In this paper, we consider the inverse boundary problems of recovering the time-dependent nonlinearity and damping term for a semilinear wave equation on a Riemannian manifold. The Carleman estimate and the construction of Gaussian beams together with the higher order linearization are respectively used to derive the uniqueness results of recovering the coefficients.