论文标题
修改图的强统治数
Strong domination number of a modified graph
论文作者
论文摘要
令$ g =(v,e)$为一个简单的图。如果每个顶点$ x \ in V \ setminus d $中的每个顶点$ x \,则设置$ d \ subseteq v $是强大的$ g $集合集,d $ in D $ in D $ in(g)$ in(g)$和$ deg(x)\ leq veg(y)$。强统治数$γ_{st}(g)$定义为强主体的最小基数。在本文中,我们研究$γ_{st}(g)$的效果当$ g $通过$ g $的顶点和边缘的操作修改时。
Let $G=(V,E)$ be a simple graph. A set $D\subseteq V$ is a strong dominating set of $G$, if for every vertex $x\in V\setminus D$ there is a vertex $y\in D$ with $xy\in E(G)$ and $deg(x)\leq deg(y)$. The strong domination number $γ_{st}(G)$ is defined as the minimum cardinality of a strong dominating set. In this paper, we study the effects on $γ_{st}(G)$ when $G$ is modified by operations on vertex and edge of $G$.