论文标题

布鲁斯·罗伯特(Bruce-Roberts

Bruce-Roberts Numbers and Quasihomogeneous Functions on Analytic Varieties

论文作者

Bivià-Ausina, Carles, Kourliouros, Konstantinos, Ruas, Maria Aparecida Soares

论文摘要

考虑到分析品种的细菌$ x $和一个全体形函数$ f $的细菌,与$ x $的对数分层具有分层孤立的奇异性,我们表明,在某些条件下,对奇异性$ $ $(f,x)$的奇异性类型(f,x)$,以下是众所周知的K. saito的saito saito theorem的相对相对相对的相对数字:作为布鲁斯·罗伯特(Bruce-Roberts)的数字)相当于对$(f,x)$的相对准杂种性,即存在坐标系统,以至于$ f $ and $ x $都相对于相同的正理性权重。

Given a germ of an analytic variety $X$ and a germ of a holomorphic function $f$ with a stratified isolated singularity with respect to the logarithmic stratification of $X$, we show that under certain conditions on the singularity type of the pair $(f,X)$, the following relative analog of the well known K. Saito's theorem holds true: equality of the relative Milnor and Tjurina numbers of f with respect to X (also known as Bruce-Roberts numbers) is equivalent to the relative quasihomogeneity of the pair $(f,X)$, i.e. to the existence of a coordinate system such that both $f$ and $X$ are quasihomogeneous with respect to the same positive rational weights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源