论文标题
Jellium模型两个线性统计之间的协方差计算
A computation of the covariance between two linear statistics for the Jellium model
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We extend previous results providing an exact formula for the variance of a linear statistic for the Jellium model, a one-dimensional model of Statistical mechanics obtained from the $k \longrightarrow 0^{+}$ limit of the Dyson log-gas. For such a computation of the covariance, in comparison to previous work for computations of the log-gas covariance, we obtain a formula between two linear statistics, given arbitrary functions $f$ and $g$ over the real line, that is dependent upon an asymptotic approximation of the Jellium probability distribution function from large $N$ deviations, and from an effective saddle-point action.