论文标题

部分可观测时空混沌系统的无模型预测

Field-Effect Josephson Diode via Asymmetric Spin-Momentum-Locking States

论文作者

Fu, Pei-Hao, Xu, Yong, Yang, Shengyuan A., Lee, Ching Hua, Ang, Yee Sin, Liu, Jun-Feng

论文摘要

Josephson二极管的最新突破悬挂在传统的非重生电子设备中的可能性中。尽管强大的磁场因提高二极管效率而被认可,但同时构成了破坏非隔离设备所需的必需超导性的风险。为了规避对基于磁性的调整的需求,我们提出了基于有限动量库珀对静电栅极控制的野外效应二极管。我们提出了我们的栅极控制机制的两个可能的实现:(i)在时间反转量子量子旋转厅绝缘子中的拓扑现场效应约瑟夫森二极管; (ii)在涉及Zeeman场和自旋轨道耦合的当前实验设置中,基于半导体的野外效应Josephson Diodes。值得注意的是,在拓扑场效应的约瑟夫森二极管中,二极管效率高度提高,因为不对称螺旋边缘状态携带的电流受到拓扑保护,并且可以通过局部门调节。在拟议的约瑟夫森二极管中,门和不对称的自旋摩托锁的结合与磁场相等,因此在设计非近代超导器件时提供了替代的电气操作。

Recent breakthroughs in Josephson diodes dangle the possibility of extending conventional non-reciprocal electronics into the realm of superconductivity. While a strong magnetic field is recognized for enhancing diode efficiency, it concurrently poses a risk of undermining the essential superconductivity required for non-dissipative devices. To circumvent the need for magnetic-based tuning, we propose a field-effect Josephson diode based on the electrostatic gate control of finite momentum Cooper pairs in asymmetric spin-momentum-locking states. We propose two possible implementations of our gate-controlled mechanism: (i) a topological field-effect Josephson diode in time-reversal-broken quantum spin Hall insulators; and (ii) semiconductor-based field-effect Josephson diodes attainable in current experimental setups involving a Zeeman field and spin-orbit coupling. Notably, the diode efficiency is highly enhanced in the topological field-effect Josephson diode because the current carried by the asymmetric helical edge states is topologically protected and can be tuned by local gates. In the proposed Josephson diode, the combination of gates and asymmetric spin-momentum-locking nature is equivalent to that of a magnetic field, thus providing an alternative electrical operation in designing nonreciprocal superconducting devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源