论文标题

Med-Query:可随意解析带有查询嵌入的9多种医学解剖学

Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding

论文作者

Guo, Heng, Zhang, Jianfeng, Yan, Ke, Lu, Le, Xu, Minfeng

论文摘要

从3D计算机断层扫描(CT)的实例级别自动解析人类解剖学是许多临床应用的前提步骤。病理,破裂的结构或有限的视野(FOV)的存在都可以使解剖学解析算法易受伤害。在这项工作中,我们探讨了如何利用和实施3D医学数据的成功检测 - 然后进行细分范式,并提出了一个可检测,健壮且有效的计算框架,用于检测,识别和分割CT扫描中的解剖学。考虑到解剖学的复杂形状,大小和方向,而不会丧失一般性,我们使用新型的单阶段,非分层表示,在完整的3D空间中呈现了9个自由度(9-DOF)姿势估计解决方案。我们的整个框架是以可说的方式执行的,可以直接检索任何感兴趣的解剖结构,以进一步提高推理效率。我们已经验证了三个医学成像解析任务的方法:肋骨,脊柱和腹部器官。对于肋骨解析,在肋骨实例级别上注释了CT扫描以进行定量评估,类似于脊柱椎骨和腹部器官。对9-DOF盒检测和肋骨实例分割的广泛实验证明了我们的框架的效率和有效性(识别率为97.0%,分割骰子得分为90.9%),与多个强质基线进行了比较(例如,Centernet,FCOS和NNU-NET)。对于脊柱解析和腹部多器官细分,我们的方法分别与公共CTSPINE1K数据集和Flare22竞争的最新方法相当地取得了竞争成果。我们的注释,代码和模型可在以下网址提供:https://github.com/alibaba-damo-academy/med_query。

Automatic parsing of human anatomies at the instance-level from 3D computed tomography (CT) is a prerequisite step for many clinical applications. The presence of pathologies, broken structures or limited field-of-view (FOV) can all make anatomy parsing algorithms vulnerable. In this work, we explore how to leverage and implement the successful detection-then-segmentation paradigm for 3D medical data, and propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in CT scans. Considering the complicated shapes, sizes, and orientations of anatomies, without loss of generality, we present a nine degrees of freedom (9-DoF) pose estimation solution in full 3D space using a novel single-stage, non-hierarchical representation. Our whole framework is executed in a steerable manner where any anatomy of interest can be directly retrieved to further boost inference efficiency. We have validated our method on three medical imaging parsing tasks: ribs, spine, and abdominal organs. For rib parsing, CT scans have been annotated at the rib instance-level for quantitative evaluation, similarly for spine vertebrae and abdominal organs. Extensive experiments on 9-DoF box detection and rib instance segmentation demonstrate the high efficiency and effectiveness of our framework (with the identification rate of 97.0% and the segmentation Dice score of 90.9%), compared favorably against several strong baselines (e.g., CenterNet, FCOS, and nnU-Net). For spine parsing and abdominal multi-organ segmentation, our method achieves competitive results on par with state-of-the-art methods on the public CTSpine1K dataset and FLARE22 competition, respectively. Our annotations, code, and models are available at: https://github.com/alibaba-damo-academy/Med_Query.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源