论文标题

使用扩散模型通过像素指导进行细粒度的图像编辑

Fine-grained Image Editing by Pixel-wise Guidance Using Diffusion Models

论文作者

Matsunaga, Naoki, Ishii, Masato, Hayakawa, Akio, Suzuki, Kenji, Narihira, Takuya

论文摘要

我们的目标是开发适用于现实世界应用的细粒度实体编辑方法。在本文中,我们首先总结了这些方法的四个要求,并提出了一个基于扩散的图像编辑框架,并具有按像素的指导来满足这些要求。具体来说,我们使用一些带注释的数据训练像素分类器,然后推断目标图像的分割图。然后,用户操纵地图以指示如何编辑图像。我们利用预先训练的扩散模型来生成与用户意图与像素的指导一致的编辑图像。拟议的指导和其他技术的有效组合可以通过保留编辑区域的外部进行高度控制的编辑,从而满足我们的要求。实验结果表明,我们的提案的表现优于基于GAN的编辑质量和速度的方法。

Our goal is to develop fine-grained real-image editing methods suitable for real-world applications. In this paper, we first summarize four requirements for these methods and propose a novel diffusion-based image editing framework with pixel-wise guidance that satisfies these requirements. Specifically, we train pixel-classifiers with a few annotated data and then infer the segmentation map of a target image. Users then manipulate the map to instruct how the image will be edited. We utilize a pre-trained diffusion model to generate edited images aligned with the user's intention with pixel-wise guidance. The effective combination of proposed guidance and other techniques enables highly controllable editing with preserving the outside of the edited area, which results in meeting our requirements. The experimental results demonstrate that our proposal outperforms the GAN-based method for editing quality and speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源