论文标题

通过更好地歧视噪声瞬变,改善了二进制黑洞的搜索

Improved binary black hole searches through better discrimination against noise transients

论文作者

Choudhary, Sunil, Bose, Sukanta, Dhurandhar, Sanjeev, Joshi, Prasanna

论文摘要

Ligo和处女座检测器中的短次噪声瞬变显着影响紧凑型二元合并(CBC)信号的搜索灵敏度,尤其是在高质量区域。在作者\ cite {joshi_2021}之前的作品中,提出了$χ^2 $统计量,以将其建模为正弦波斯人与非旋转CBC时进行区分。目前的工作是一个扩展程序,我们证明了改进的$χ^2 $统计量的更好的噪声歧视 - 在实际Ligo数据中称为优化的正弦高斯$χ^2 $。该扩展名包括对噪声瞬变的初始阶段的核算,以及选择良好的正弦高斯基础矢量的选择,以辨别CBC信号和一些最令人担忧的噪声传播方式在它们上的不同项目〜\ cite {sunil_2022}。为了证明这一改进,我们将Ligo-Hanford和Ligo-Livingston探测器的第三次观察跑(O3)中的Blip Glitches进行数据。 BLIP是一种短期非高斯噪声干扰,已知会对高质量CBC搜索产生不利影响。对于CBC,使用\ textsc {imrphenompv2}波形模拟了自旋的二进制黑洞信号,并从同一运行中注入了真实的Ligo数据。我们表明,与正弦高斯$χ^2 $相比,优化的正弦高斯$χ^2 $在低质量的bin中提高了整体真实的正速率($ m_1,m_2 \ in [20,40] m _ {\ odot} $ _ {\ odot} $ _ {\ odot} $ _ \ 3 \%以上的bin(MOS),MOS_2 [60,80] m _ {\ odot} $)。另一方面,与传统的$χ^2 $相比,我们看到两个大众垃圾箱的改进量超过20 \%。

Short-duration noise transients in LIGO and Virgo detectors significantly affect the search sensitivity of compact binary coalescence (CBC) signals, especially in the high mass region. In a previous work by the authors \cite{Joshi_2021}, a $χ^2$ statistic was proposed to distinguish them, when modeled as sine-Gaussians, from non-spinning CBCs. The present work is an extension where we demonstrate the better noise-discrimination of an improved $χ^2$ statistic -- called the optimized sine-Gaussian $χ^2$ -- in real LIGO data. The extension includes accounting for the initial phase of the noise transients and use of a well-informed choice of sine-Gaussian basis vectors selected to discern how CBC signals and some of the most worrisome noise-transients project differently on them~\cite{sunil_2022}. To demonstrate this improvement, we use data with blip glitches from the third observational run (O3) of LIGO-Hanford and LIGO-Livingston detectors. Blips are a type of short-duration non-Gaussian noise disturbance known to adversely affect high-mass CBC searches. For CBCs, spin-aligned binary black hole signals were simulated using the \textsc{IMRPhenomPv2} waveform and injected into real LIGO data from the same run. We show that in comparison to the sine-Gaussian $χ^2$, the optimized sine-Gaussian $χ^2$ improves the overall true positive rate by around 6\% in a lower-mass bin ($m_1,m_2 \in [20,40]M_{\odot}$) and by more than 3\% in a higher-mass bin ($m_1,m_2 \in [60,80]M_{\odot}$). On the other hand, we see a larger improvement -- of more than 20\% -- in both mass bins in comparison to the traditional $χ^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源