论文标题

增强Si-Doped(010)$β$ -GA $ _2 $ o $ $ $ _3 $胶片的电子移动性(010)

Enhancing the Electron Mobility in Si-doped (010) $β$-Ga$_2$O$_3$ films with Low-Temperature Buffer Layers

论文作者

Bhattacharyya, Arkka, Peterson, Carl, Itoh, Takeki, Roy, Saurav, Cooke, Jacqueline, Rebollo, Steve, Ranga, Praneeth, Sensale-Rodriguez, Berardi, Krishnamoorthy, Sriram

论文摘要

我们在$β$ -GA $ _2 $ _2 $ _3 $使用金属有机蒸气相(MOVPE)中展示了一种新的底物清洁和缓冲增长方案。对于通道结构,低温(LT,600 $^\ circ $ c)未掺杂的ga $ _2 $ _2 $ _3 $缓冲液越来越多,然后是过渡层,向高温(HT,810 $^\ Circ $ c)Si-oped si-oped si-oped ga $ _2 $ _2 $ _3 $ o $ _3 $ $ _3 $ channel lovellive lovertions lovellive lovertions lovellive lovertions lovellive loverthens noternepression。 (010)ga $ _2 $ o $ _3 $掺杂的底物清洁使用溶剂清洁,然后再进行额外的HF(49%的水处理)治疗,持续30分钟,然后再增长。该步骤显示以补偿源自底物抛光过程或环境污染的层状底座界面处的寄生si通道。 SIMS分析表明,底物界面处的Si峰原子密度比基材中的Fe原子密度低几倍 - 表明完全补偿。还通过电(电容 - 电压分析)测量值验证了Epi-Substrate界面处的寄生电子通道。在LT生长的缓冲层中,可以看出,底物的Fe Forward Decay尾巴非常清晰,衰减率为$ \ sim $ 9 nm $/$ $/$ dec。这些频道在196-85厘米$^2 $/vs的范围内显示出高度电子机动性,无意中的掺杂和Si掺杂胶片的兴奋剂范围为2 $ \ times $ \ times $ 10 $^{16} $ to 1 $ \ times $ \ times $ 10 $^{20} {20} $ cm $ cm $^{ - 3} $。 Si Delta掺杂的通道还使用了这种基板清洁和混合LT挡板种植。记录高电子大厅的移动性为110 cm $^2 $/vs的表纸电荷密度为9.2 $ \ times $ 10 $^{12} $ cm $^{ - 2} $。该基材清洁与LT-Buffer方案相结合,显示了设计Si掺杂的$β$ -GA $ -GA $ _2 $ o $ $ _3 $通道的潜力,该通道具有出色的运输属性,用于基于氧化物的高性能镀层电子设备。

We demonstrate a new substrate cleaning and buffer growth scheme in $β$-Ga$_2$O$_3$ epitaxial thin films using metalorganic vapor phase epitaxy (MOVPE). For the channel structure, a low-temperature (LT, 600 $^\circ$C) undoped Ga$_2$O$_3$ buffer is grown followed by transition layers to a high-temperature (HT, 810 $^\circ$C) Si-doped Ga$_2$O$_3$ channel layers without growth interruption. The (010) Ga$_2$O$_3$ Fe-doped substrate cleaning uses solvent cleaning followed by an additional HF (49% in water) treatment for 30 mins before the epilayer growth. This step is shown to compensate the parasitic Si channel at the epilayer-substrate interface that originates from the substrate polishing process or contamination from the ambient. SIMS analysis shows the Si peak atomic density at the substrate interface is several times lower than the Fe atomic density in the substrate - indicating full compensation. The elimination of the parasitic electron channel at the epi-substrate interface was also verified by electrical (capacitance-voltage profiling) measurements. In the LT-grown buffer layers, it is seen that the Fe forward decay tail from the substrate is very sharp with a decay rate of $\sim$ 9 nm$/$dec. These channels show record high electron mobility in the range of 196 - 85 cm$^2$/Vs in unintentionally doped and Si-doped films in the doping range of 2$\times$10$^{16}$ to 1$\times$10$^{20}$ cm$^{-3}$. Si delta-doped channels were also grown utilizing this substrate cleaning and the hybrid LT-buffers. Record high electron Hall mobility of 110 cm$^2$/Vs was measured for sheet charge density of 9.2$\times$10$^{12}$ cm$^{-2}$. This substrate cleaning combined with the LT-buffer scheme shows the potential of designing Si-doped $β$-Ga$_2$O$_3$ channels with exceptional transport properties for high performance gallium oxide-based electron devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源