论文标题

以积极特征和galois表示的三角洲字符

Delta Characters in Positive Characteristic and Galois Representations

论文作者

Pandit, Sudip, Saha, Arnab

论文摘要

在本文中,我们开发了$δ$ - 安德森模块的特征。考虑到任何Anderson模块$ e $(满足某些条件),使用$δ$ - 几何的理论,我们用hodge-pink结构构建了一个规范的$ z $ -isocrystal $ {\ mathbf {\ mathbf {h}_δ(e)} $。作为一个应用程序,我们表明,当$ e $是德林菲尔德模块时,我们构造的$ z $ -isocrystal $ {\ mathbf {h}_Δ(e)} $是差不多的,鉴于$Δ$ - 参数是非零。因此,Fontaine Foundator的同等特征类似物将局部shtuka关联,因此结晶$ z $ -ADIC GALOIS代表与$δ$ - 几何对象$ {\ MATHBF {h} h}_Δ(e)} $。众所周知,$ e $有一个天然的本地shtuka。对于Carlitz模块,我们表明与$ {\ Mathbf {h}_δ(e)} $相关的Galois表示确实是来自Tate模块的通常的代表。因此,本文进一步提出了一个问题,即在上述两个明显不同的Galois表示形式如何在任意等级的Drinfeld模块中相互比较。

In this article we develop the theory of $δ$-characters of Anderson modules. Given any Anderson module $E$ (satisfying certain conditions), using the theory of $δ$-geometry, we construct a canonical $z$-isocrystal ${\mathbf{H}_δ(E)}$ with a Hodge-Pink structure. As an application, we show that when $E$ is a Drinfeld module, our constructed $z$-isocrystal ${\mathbf{H}_δ(E)}$ is weakly admissible given that a $δ$-parameter is non-zero. Therefore the equal characteristic analogue of the Fontaine functor associates a local shtuka and hence a crystalline $z$-adic Galois representation to the $δ$-geometric object ${\mathbf{H}_δ(E)}$. It is also well known that there is a natural local shtuka attached to $E$. In the case of Carlitz modules, we show that the Galois representation associated to ${\mathbf{H}_δ(E)}$ is indeed the usual one coming from the Tate module. Hence this article further raises the question of how the above two apparently different Galois representations compare with each other for a Drinfeld module of arbitrary rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源