论文标题
与平均场相互作用的空间随机流行模型的中心极限定理
Central limit theorem for a spatial stochastic epidemic model with mean field interaction
论文作者
论文摘要
在本文中,我们在流行病学的背景下研究一个相互作用的粒子系统,其中个体(颗粒)的位置和感染状态为特征。我们首先从显微镜水平的描述开始,在该水平上,个体的位移是由平均场相互作用和状态依赖性扩散驱动的,而流行病学动态由基于附近其他个体的其他分布(也是平均场型)的泊松过程描述了具有感染率的泊松过程。然后在适当的假设下,已经建立了大量法则,以表明与上述系统相关的经验措施将非线性麦基恩 - 弗拉索夫方程的独特解决方案的定律收敛。作为一个自然的后续问题,我们研究了该随机系统围绕其极限的波动。我们证明,这种波动过程会收敛到极限过程,该过程可以表征为线性随机PDE的唯一解。与现有的文献使用耦合方法证明相互作用粒子系统的中心极限定理不同,我们证明的主要思想是使用半群形式主义和一些适当的估计值,以直接研究适当加权的Sobolev空间中波动过程的线性化演化方程,并遵循尼尔伯特的方法。
In this article, we study an interacting particle system in the context of epidemiology where the individuals (particles) are characterized by their position and infection state. We begin with a description at the microscopic level where the displacement of individuals is driven by mean field interactions and state-dependent diffusion, whereas the epidemiological dynamic is described by the Poisson processes with an infection rate based on the distribution of other nearby individuals, also of the mean-field type. Then under suitable assumptions, a form of law of large numbers has been established to show that the associated empirical measure to the above system converges to the law of the unique solution of a nonlinear McKean-Vlasov equation. As a natural follow-up question, we study the fluctuation of this stochastic system around its limit. We prove that this fluctuation process converges to a limit process, which can be characterized as the unique solution of a linear stochastic PDE. Unlike the existing literature using a coupling approach to prove the central limit theorem for interacting particle systems, the main idea in our proof is to use a semigroup formalism and some appropriate estimates to directly study the linearized evolution equation of the fluctuation process in a suitable weighted Sobolev space and follows a Hilbertian approach.