论文标题
在一般表面限制下的弹性曲线的接触力与局部几何形状之间的关系
Relation between the contact force and local geometry for an elastic curve under general surface confinement
论文作者
论文摘要
在许多生物学,医学和工程场景中,丝状物体的限制无处不在。由于弹性与几何约束相互作用引起的未知接触力,因此定量确定柔性细丝与表面限制之间的机械相互作用尤其具有挑战性。在这里,我们考虑了一个简化的丝状丝状对象的模型:表面限制下的弹性曲线。局部力量和矩平方方程融合了接触的作用,用于推导表面在密闭弹性曲线上施加的接触力。它揭示了平衡状态下接触力与局部几何形状之间的关系,并提供了直接从局部约束几何形状获得接触力的途径。提供了示例,以说明如何从获得的几何形状中计算接触力。我们认为,我们的结果在表面限制下的丝状物体机制中有助于未来的努力。
Confinement of filamentary objects is ubiquitous in numerous biological, medical, and engineering scenarios. Quantitatively determining the mechanical interaction between flexible filaments and surface confinement is particularly challenging due to the unknown contact force induced by elasticity interacting with geometric constraints. Here, we consider a simplified model of confined filamentary object: an elastic curve under surface confinement. Local force and moment balance equation incorporating the role of contact is utilized to derive the contact force exerted by surface on the confined elastic curve. It reveals the relation between contact force and local geometry at balanced state and provides a route to obtain the contact force from local confined geometry directly. Examples are provided to illustrate how to calculate contact force from obtained geometries. We believe that our results contribute to future efforts in the mechanics of filamentary objects under surface confinement.