论文标题

$ \ Mathcal {x} $ - $ P $ - 组的系列和Abelian子组的补充

The $\mathcal{X}$-series of a $p$-group and complements of abelian subgroups

论文作者

Aivazidis, Stefanos, Loukaki, Maria

论文摘要

令$ g $为$ p $ -group。我们用$ \ Mathcal {x} _i(g)$ $ g $的所有子组的交集,$ g $,具有索引$ p^i $,对于$ i \ leq \ log_p(| g |)$。在本文中,研究了新引入的系列$ \ {\ Mathcal {x} _i(g)\} _ I $,并证明了有关其行为的许多结果。作为这些结果的应用,我们表明,如果Abelian子组$ a $ a $ g $相交的每个子组$ \ Mathcal {x} _i(g)$ at $ \ MATHCAL {x} _i _i(a)$,那么$ a $ a $在$ g $中具有补充。相反,如果任意子组的$ g $的$ h $具有正常的补充,则$ \ mathcal {x} _i(h)= \ Mathcal {x} _i(g)\ cap h $。

Let $G$ be a $p$-group. We denote by $\mathcal{X}_i(G)$ the intersection of all subgroups of $G$ having index $p^i$, for $i \leq \log_p(|G|)$. In this paper, the newly introduced series $\{\mathcal{X}_i(G)\}_i$ is investigated and a number of results concerning its behaviour are proved. As an application of these results, we show that if an abelian subgroup $A$ of $G$ intersects each one of the subgroups $\mathcal{X}_i(G)$ at $\mathcal{X}_i(A)$, then $A$ has a complement in $G$. Conversely if an arbitrary subgroup $H$ of $G$ has a normal complement, then $\mathcal{X}_i(H) = \mathcal{X}_i(G) \cap H$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源