论文标题
分析$(φ_L,γ_L)$ WASAWA的同谋$ - 模块
Iwasawa cohomology of analytic $(φ_L,Γ_L)$-modules
论文作者
论文摘要
我们表明,iWasawa共同体的合同性是$ l $分析的lubin-tate $(φ_l,γ_l)$ - 模块$ m $是必需的,足以存在于前者和前者和其lubin tate $ base $ base的分析同构的同构的比较同构的比较。 $ L $分析分布。我们验证在三角形案例中是否可以满足合并性,并表明它可以``传播''对相当大的模块,只要在典型案例中证明了它。
We show that the coadmissibility of the Iwasawa cohomology of an $L$-analytic Lubin-Tate $(φ_L,Γ_L)$-module $M$ is necessary and sufficient for the existence of a comparison isomorphism between the former and the analytic cohomology of its Lubin-Tate deformation, which, roughly speaking, is given by the base change of $M$ to the algebra of $L$-analytic distributions. We verify that coadmissibility is satisfied in the trianguline case and show that it can be ``propagated'' to a reasonably large class of modules, provided it can be proven in the étale case.