论文标题

fp-prokentive周期性

Fp-projective periodicity

论文作者

Bazzoni, Silvana, Hrbek, Michal, Positselski, Leonid

论文摘要

Benson和GoodeArl发现的周期性现象与无环复合物中共伴生物的对象的行为有关。众所周知,任何平坦的$ \ Mathsf {proj} $ - 定期模块是投射的,任何fp Injextive $ \ mathsf {inj} $ - 定期模块都是注入的,任何$ \ MATHSF {COT} $ - 定期模块都是Cotorsion。众所周知,任何纯$ \ Mathsf {pproj} $ - 定期模块都是纯标记,并且任何纯$ \ Mathsf {pinj} $ - 周期性模块都是纯净的。概括了Saroch和Stovicek的结果,我们表明每个$ \ mathsf {fpproj} $ - 定期模块都是弱fp-projective。证明是相当基本的,仅使用强大的纯标记周期性和山丘引理。更笼统地,我们证明,在本地有限的Grothendieck类别中,每个$ \ mathsf {fpproj} $ - 周期性对象都是弱fp-projective。在本地相干类别中,所有弱fp-projective对象都是fp-projective。我们还提出了反例,表明在常规有限生成的通勤代数(或遗传有限的二维关联代数)上,非纯净的$ \ mathsf {pproj} $ - 定期模块,而不是纯正的。

The phenomenon of periodicity, discovered by Benson and Goodearl, is linked to the behavior of the objects of cocycles in acyclic complexes. It is known that any flat $\mathsf{Proj}$-periodic module is projective, any fp-injective $\mathsf{Inj}$-periodic module is injective, and any $\mathsf{Cot}$-periodic module is cotorsion. It is also known that any pure $\mathsf{PProj}$-periodic module is pure-projective and any pure $\mathsf{PInj}$-periodic module is pure-injective. Generalizing a result of Saroch and Stovicek, we show that every $\mathsf{FpProj}$-periodic module is weakly fp-projective. The proof is quite elementary, using only a strong form of the pure-projective periodicity and the Hill lemma. More generally, we prove that, in a locally finitely presentable Grothendieck category, every $\mathsf{FpProj}$-periodic object is weakly fp-projective. In a locally coherent category, all weakly fp-projective objects are fp-projective. We also present counterexamples showing that a non-pure $\mathsf{PProj}$-periodic module over a regular finitely generated commutative algebra (or a hereditary finite-dimensional associative algebra) over a field need not be pure-projective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源