论文标题
具有空间分散的等离激元纳米颗粒的致密簇的有效介质描述
Effective medium description of dense clusters of plasmonic nanoparticles with spatial dispersion
论文作者
论文摘要
我们研究了由平面波照明下由数百个等离激元纳米关节制成的密集的球形簇的电磁行为。使用高精度T-Matrix数值计算,我们计算半径高达80 nm的簇的多极响应,粒子体积分数高达44 \%。然后,我们研究以完全一致的方式考虑弱空间分散,是否有可能为集群获得有效的介质描述。我们发现,可以通过将扩展的MIE理论应用于以三个有效参数为特征的等效均匀的小球来准确地复制球形群集的平均分散场以及球形簇的平均内部场:电渗透效率$ \ varepsilon _ {\ varepsilon _ {\ sathrm {feff}} $ {\ saterrm {eff} $}横向模式和与球体中的纵向模式相关联的波形$ k_ \ mathrm {l} $。我们的结果表明,尽管没有显示任何单独的磁偶极子,但人工磁性是由密集簇中的颗粒间耦合引起的。我们还发现,尽管在有关超材料的文献中很大程度上被忽略了,但纵向模式的存在对于准确地重现群集的田地至关重要,与人工磁性的作用相当。因此,我们的研究证明,即使对于夹杂物的高度浓度,也有可能将等离子体颗粒簇视为由空间分散性均匀培养基制成的球体。这提供了一种实用的解决方案,以促进这种密集的随机培养基的计算,以设计超材料和元信息设计的各种兴趣构型。
We study the electromagnetic behaviour of dense, spherical clusters made of hundreds of plasmonic nanoparticules under illumination by a plane wave. Using high-precision T-matrix numerical calculations, we compute the multipolar response of clusters up to 80 nm in radius and up to 44\% in particle volume fraction. We then investigate whether it is possible to obtain an effective medium description for the clusters, taking into account weak spatial dispersion in a fully consistent way. We find that the average scattered field as well as the average inner field of the spherical cluster can be accurately reproduced by applying an extended Mie theory to an equivalent homogeneous sphere characterized by three effective parameters: an electric permittivity $\varepsilon_{\mathrm{eff}}$ and a magnetic permeability $μ_{\mathrm{eff}}$, associated to transverse modes, and a wavevector $k_\mathrm{L}$, associated to a longitudinal mode in the sphere. Our results show that artificial magnetism arises from interparticle couplings in the dense cluster, despite inclusions not displaying any individual magnetic dipole. We also find that, although largely overlooked in the literature on metamaterials, the presence of the longitudinal mode is essential to accurately reproduce the fields of the cluster, on par with the role of artificial magnetism. Our study therefore proves that, even for high concentration in inclusions, it is possible empirically to treat a cluster of plasmonic particles as a sphere made of a spatially-dispersive homogeneous medium. This offers a practical solution facilitating the computation of electromagnetic responses of such dense random media in diverse configurations of interest for the design of metamaterials and metasurfaces.