论文标题
建造多方不可扩展的产品基库和正纠缠纠缠状态的纠缠状态的几何测量
Construction of multipartite unextendible product bases and geometric measure of entanglement of positive-partial-transpose entangled states
论文作者
论文摘要
在量子信息理论中,构建多部分不可扩展的产品库(UPB)是一个基本问题。我们表明,希尔伯特空间中存在两个家庭UPB $ \ MATHBB {C}^2 \ otimes \ Mathbb {C}^2 \ otimes \ Mathbb {c}^2 \ otimes \ otimes \ Mathbb {c}^2 \ otimes \ otimes \ otime现有$ 7 $ Qubit的UPB的系统尺寸为$ 11 $。此外,建立了一个新的$ 7 $ Qubit-Qubit-Qubit-Qubit-Qubit-Qubit-Qubit-partial-Partial-tanspose(PPT)等级$ 2^7-11美元的纠缠状态。我们分析得出了特殊PPT纠缠状态的纠缠的几何测量。同样,上限通过两种方法给出。
In quantum information theory, it is a fundamental problem to construct multipartite unextendible product bases (UPBs). We show that there exist two families UPBs in Hilbert space $\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^4$ by merging two different systems of an existing $7$-qubit UPB of size $11$. Moreover, a new family of $7$-qubit positive-partial-transpose (PPT) entangled states of rank $2^7-11$ is constructed. We analytically derive a geometric measure of entanglement of a special PPT entangled states. Also an upper bound are given by two methods.