论文标题
旋转激发连续到拓扑镁跨界和基塔耶磁铁中的热门电导率
Spin excitation continuum to topological magnon crossover and thermal Hall conductivity in Kitaev magnets
论文作者
论文摘要
人们对识别具有粘结依赖性相互作用的沮丧磁体中的基塔夫量子旋转液态一直很感兴趣。特别是,在存在磁场的情况下,在$α$ -rucl $ _3 $中进行半量化的热门电导率的实验报告引起了兴奋,因为它可能是野外诱导的手性旋转液体的有力证据。然而,最新的实验提供了一种相互矛盾的解释,该解释提倡在现场偏振状态下作为其实验中观察到的非量化热霍尔电导率的起源。区分两种情况的固有困难是假定的二维自旋液体与场偏置状态之间的相变仅在零温度下存在,而有限温度下的行为主要是交叉现象。在这项工作中,我们提供了有关在三种不同的基塔EV相互作用的三种不同的理论模型中,在量子自旋液体中的自旋激发连续体和拓扑状态的旋转激发连续体之间的有限温度交叉行为。这些模型允许在量子模型中从旋转液体(或中间场诱导的旋转液体)到田间偏振状态的场诱导的相变。我们使用分子动力学模拟获得了动力学自旋结构因子作为磁场的函数,并计算了场极化状态中的热霍尔电导率。我们证明了动态自旋结构因子在磁场附近表现出交叉行为的逐渐演变,量子模型中发生零温度相变。我们还检查了使用线性自旋波理论计算出的热门电导率的非线性效应以及热霍尔电导率的有效性。我们讨论结果对现有和将来的实验的含义。
There has been great interest in identifying a Kitaev quantum spin liquid state in frustrated magnets with bond-dependent interactions. In particular, the experimental report of a half-quantized thermal Hall conductivity in $α$-RuCl$_3$ in the presence of a magnetic field has generated excitement as it could be strong evidence for a field-induced chiral spin liquid. More recent experiments, however, provide a conflicting interpretation advocating for topological magnons in the field-polarized state as the origin of the non-quantized thermal Hall conductivity observed in their experiments. An inherent difficulty in distinguishing between the two scenarios is the phase transition between a putative two-dimensional spin liquid and the field-polarized state exists only at zero temperature, while the behaviour at finite temperature is mostly crossover phenomena. In this work, we provide insights into the finite temperature crossover behavior between the spin excitation continuum in a quantum spin liquid and topological magnons in the field-polarized state in three different theoretical models with large Kitaev interactions. These models allow for a field-induced phase transition from a spin liquid (or an intermediate field-induced spin liquid) to the field-polarized state in the quantum model. We obtain the dynamical spin structure factor as a function of magnetic field using molecular dynamics simulations and compute thermal Hall conductivity in the field-polarized regime. We demonstrate the gradual evolution of the dynamical spin structure factor exhibiting crossover behaviour near magnetic fields where zero-temperature phase transitions occur in the quantum model. We also examine nonlinear effects on topological magnons and the validity of thermal Hall conductivity computed using linear spin wave theory. We discuss the implications of our results to existing and future experiments.