论文标题
局部磁场的分析自举
Analytic bootstrap for the localized magnetic field
论文作者
论文摘要
我们研究了临界O(N)模型中本地运算符的两点函数,该磁场的存在位于线上。我们使用最近开发的共形性分散关系来以$ε$ - expansion的一阶计算相关器,并使用Lorentzian倒置公式提取完整的缺陷和批量CFT数据。计算连接相关器的唯一输入是其在扰动理论中的一阶不连续性,该分数由单个批量操作员的异常维度确定。我们讨论可能的低自旋歧义,并对我们的结果进行几次图解检查。
We study the two-point function of local operators in the critical O(N) model in the presence of a magnetic field localized on a line. We use a recently developed conformal dispersion relation to compute the correlator at first order in the $ε$-expansion and we extract the full set of defect and bulk CFT data using the Lorentzian inversion formulae. The only input for the computation of the connected correlator is its discontinuity at first order in perturbation theory, which is determined by the anomalous dimension of a single bulk operator. We discuss possible low-spin ambiguities and perform several diagrammatic checks of our results.