论文标题

概率风险评估的基于兴趣的视觉领域的多模式轨迹预测

Visual Area of Interests based Multimodal Trajectory Prediction for Probabilistic Risk Assessment

论文作者

Zhang, Qiang, Yang, Lingfang, Zhang, Xiaoliang, Song, Xiaolin, Huang, Zhi

论文摘要

对驾驶意图和未来轨迹的准确预测有助于在复杂的交通环境中人类驱动因素与ADA之间的合作。本文提出了一个基于视觉AOI(感兴趣的领域)的多模式轨迹预测模型,用于交叉路口的概率风险评估。在这项研究中,我们发现视觉AOI意味着驾驶意图,并且在操作之前约为0.6-2.1 s。因此,我们设计了一个轨迹预测模型,该模型集成了驱动意图(DI)和多模式轨迹(MT)预测。 DI模型已进行了预训练,以使用视觉AOI,历史载体状态和环境环境等功能来提取驾驶意图。意图预测实验验证了基于视觉AOI的DI模型是否在实际转向操作之前预测转向意图0.925 s。然后将受过训练的DI模型集成到轨迹预测模型中,以滤波多模式轨迹。轨迹预测实验表明,所提出的模型优于最新模型。交叉路口的贩运风险评估验证了所提出的方法是否达到了高准确性和较低的错误警报率,并在发生冲突之前确定了大约3 s的潜在风险。

Accurate and reliable prediction of driving intentions and future trajectories contributes to cooperation between human drivers and ADAS in complex traffic environments. This paper proposes a visual AOI (Area of Interest) based multimodal trajectory prediction model for probabilistic risk assessment at intersections. In this study, we find that the visual AOI implies the driving intention and is about 0.6-2.1 s ahead of the operation. Therefore, we designed a trajectory prediction model that integrates the driving intention (DI) and the multimodal trajectory (MT) predictions. The DI model was pre-trained independently to extract the driving intention using features including the visual AOI, historical vehicle states, and environmental context. The intention prediction experiments verify that the visual AOI-based DI model predicts steering intention 0.925 s ahead of the actual steering operation. The trained DI model is then integrated into the trajectory prediction model to filter multimodal trajectories. The trajectory prediction experiments show that the proposed model outperforms the state-of-the-art models. Risk assessment for traffics at intersections verifies that the proposed method achieves high accuracy and a low false alarm rate, and identifies the potential risk about 3 s before a conflict occurs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源