论文标题

具有轴向和径向极化的一维铁电纳米读

One Dimensional Ferroelectric Nanothreads with Axial and Radial Polarization

论文作者

Huang, Jiawei, Ke, Changming, Zhu, Wei, Liu, Shi

论文摘要

远程铁电晶体顺序通常随着空间尺寸降低而逐渐消失,因此很少有二维(2D)铁电气,而一维(1D)铁电的一维(1D)。由于去极化场,低维铁电源很少沿降低降低的方向具有极化。在这里,使用第一原理密度功能理论,我们探讨了通过切割铁电$α$ -III $ _2 $ _2 $ _2 $ iv $ iv $ _3 $(iii = al,ga,ga,in; vi = s,se,se,te)而构建的不同宽度的结构演变。我们发现了一维铁电纳米读(1DFENT)的超质直径,轴向和径向极化既具有轴向偏振,又可以实现超密集的数据存储,而只有三个单位单元的1D域是功能单元。 1DFENT的极化$ _2 $ SE $ _3 $表现出异常的压电响应:沿轴向方向的拉伸应力会增加轴向和径向极化,称为辅助压电效应。利用本质上平坦的电子带,我们证明了1dfent中铁电和铁磁磁性的共存,以及一个反直觉的电荷掺杂诱导的金属对绝缘体转变。具有轴向和径向极化的1DFENT为MERMIN提供了反示例-Wagner定理,并提出了一个新的超高密度记忆设计平台,并探索了物质的外来状态。

Long-range ferroelectric crystalline order usually fades away as the spatial dimension decreases, hence there are few two-dimensional (2D) ferroelectrics and far fewer one-dimensional (1D) ferroelectrics. Due to the depolarization field, low-dimensional ferroelectrics rarely possess the polarization along the direction of reduced dimensionality. Here, using first-principles density functional theory, we explore the structural evolution of nanoribbons of varying widths constructed by cutting the 2D sheet of ferroelectric $α$-III$_2$IV$_3$ (III=Al, Ga, In; VI=S, Se, Te). We discover a one-dimensional ferroelectric nanothread (1DFENT) of ultrasmall diameter with both axial and radial polarization, potentially enabling ultra-dense data storage with a 1D domain of just three unit cells being the functional unit. The polarization in 1DFENT of Ga$_2$Se$_3$ exhibits an unusual piezoelectric response: a stretching stress along the axial direction will increase both axial and radial polarization, referred to as auxetic piezoelectric effect. Utilizing the intrinsically flat electronic bands, we demonstrate the coexistence of ferroelectricity and ferromagnetism in 1DFENT and a counterintuitive charge-doping-induced metal-to-insulator transition. The 1DFENT with both axial and radial polarization offers a counterexample to the Mermin--Wagner theorem in 1D and suggests a new platform for the design of ultrahigh-density memory and the exploration of exotic states of matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源