论文标题
TripCeair:一种基于表面EMG的空气写入识别的多损失最小化方法
TripCEAiR: A Multi-Loss minimization approach for surface EMG based Airwriting Recognition
论文作者
论文摘要
空气写作识别是指通过手指运动在太空中写的字母识别的问题。它可以看作是动态识别的一种特殊情况,其中一组手势是特定语言的字母。表面肌电图(SEMG)是一种非侵入性方法,用于捕获由于肌肉收缩和放松而产生的电信号。 SEMG已被广泛用于手势识别应用程序。与静态手势不同,动态手势是用户友好的,可以用作使用人类计算机交互中应用的输入方法。使用SEMG信号并构成了当前工作的核心,在识别诸如空气写作之类的动态手势方面的工作有限。在这项工作中,提出了针对基于SEMG的空气写作识别的多损失最小化框架。所提出的框架旨在学习嵌入矢量的功能,以最大程度地减少三胞胎损失,同时学习分类器头的参数以识别相应的字母。所提出的方法已在实验室中记录的数据集上进行了验证,该数据集由50位参与者编写英语大写字母的SEMG信号组成。还提出了三胞胎损失,三重态挖掘策略和特征嵌入维度的不同变化的影响。通过使用Semihard正面和硬负三重矿开采,最佳的精度分别为81.26%和65.62%。我们实施的代码将在https://github.com/ayushayt/tripceair上提供。
Airwriting Recognition refers to the problem of identification of letters written in space with movement of the finger. It can be seen as a special case of dynamic gesture recognition wherein the set of gestures are letters in a particular language. Surface Electromyography (sEMG) is a non-invasive approach used to capture electrical signals generated as a result of contraction and relaxation of the muscles. sEMG has been widely adopted for gesture recognition applications. Unlike static gestures, dynamic gestures are user-friendly and can be used as a method for input with applications in Human Computer Interaction. There has been limited work in recognition of dynamic gestures such as airwriting, using sEMG signals and forms the core of the current work. In this work, a multi-loss minimization framework for sEMG based airwriting recognition is proposed. The proposed framework aims at learning a feature embedding vector that minimizes the triplet loss, while simultaneously learning the parameters of a classifier head to recognize corresponding alphabets. The proposed method is validated on a dataset recorded in the lab comprising of sEMG signals from 50 participants writing English uppercase alphabets. The effect of different variations of triplet loss, triplet mining strategies and feature embedding dimension is also presented. The best-achieved accuracy was 81.26% and 65.62% in user-dependent and independent scenarios respectively by using semihard positive and hard negative triplet mining. The code for our implementation will be made available at https://github.com/ayushayt/TripCEAiR.