论文标题

空间建模和极端降水量的未来投影

Spatial modeling and future projection of extreme precipitation extents

论文作者

Zhong, Peng, Brunner, Manuela, Opitz, Thomas, Huser, Raphaël

论文摘要

与本地事件相比,具有较大空间范围的极端降水事件可能会产生更严重的影响,因为它们可能导致广泛的洪水。辩论气候变化如何影响极端降水的空间程度,其研究通常直接依赖于气候模型的模拟。在这里,我们使用另一种策略来研究两个河流盆地(多瑙河和密西西比州)的气候区和季节之间极端降水的空间范围的未来变化。我们依靠观察到的极端降水,同时利用基于物理的平均温度协变量,这使我们能够投射未来的降水量。我们使用适当选择的空间聚合功能$ r $将协变量包括在新开发的时变$ r $ r $ pareto流程中。该模型通过将其与温度协变量联系起来,在降水极端的空间依赖性结构中捕获了时间非平稳性,我们从模型校准的观察结果和投影中的模型气候模拟(CMIP6)中得出。对于两个河流盆地,我们的结果均显示出大部分雨季的空间程度与温度协变量之间的负相关性,并且边缘的趋势越来越趋势,这表明随着降水强度在局部增加,雨季在雨季中变暖的气候中的空间降水量降低。

Extreme precipitation events with large spatial extents may have more severe impacts than localized events as they can lead to widespread flooding. It is debated how climate change may affect the spatial extent of precipitation extremes, whose investigation often directly relies on simulations from climate models. Here, we use a different strategy to investigate how future changes in spatial extents of precipitation extremes differ across climate zones and seasons in two river basins (Danube and Mississippi). We rely on observed precipitation extremes while exploiting a physics-based mean temperature covariate, which enables us to project future precipitation extents. We include the covariate into newly developed time-varying $r$-Pareto processes using a suitably chosen spatial aggregation functional $r$. This model captures temporal non-stationarity in the spatial dependence structure of precipitation extremes by linking it to the temperature covariate, which we derive from observations for model calibration and from debiased climate simulations (CMIP6) for projections. For both river basins, our results show negative correlation between the spatial extent and the temperature covariate for most of the rain season and an increasing trend in the margins, indicating a decrease in spatial precipitation extent in a warming climate during rain seasons as precipitation intensity increases locally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源