论文标题
拉曼应变班次的测量和高度硅中的第一原理的预测
Raman Strain-Shift Measurements and Prediction from First-Principles in Highly-Strained Silicon
论文作者
论文摘要
这项工作介绍了通过实验测量验证的第一原理模拟如何导致对预期拉曼转移的新准确预测,这是硅菌株的函数。首先进行应变原始细胞的结构松弛,以解决每个应变水平的硅原子的相对位移。然后,使用密度功能扰动理论(DFPT)来计算高度应对硅中的光学声子模式的能量,并检索应变转移趋势。使用扫描电子显微镜(SEM)与反向散射的拉曼光谱,通过使用自上而下方法制造的硅微光谱,通过扫描电子显微镜(SEM)验证模拟。由于氮化硅执行器的内部拉伸应力,横梁的紧张高达2 $ \%$,从而允许在高应变条件下对扰动理论进行验证。将结果与声子变形电位(PDP)理论进行了比较,并讨论了文献中发现的各种参数引起的不确定性。 -175.77 cm $^{ - 1} $(分别-400.85 cm $^{ - 1} $)的模拟应变换档系数和-160.99 cm $^{ - 1} $(resp。-414.97 cm $^{ - 1} $)的实验性一个the the the the the lotical。至$ _1 $)模式,显示出良好的协议。
This work presents how first-principles simulations validated through experimental measurements lead to a new accurate prediction of the expected Raman shift as a function of strain in silicon. Structural relaxation of a strained primitive cell is first performed to tackle the relative displacement of the silicon atoms for each strain level. Density Functional Perturbation Theory (DFPT) is then used to compute the energy of the optical phonon modes in highly-strained silicon and retrieve the strain-shift trend. The simulations are validated by experimental characterization, using scanning electron microscopy (SEM) coupled with backscattering Raman spectroscopy, of silicon microbeams fabricated using a top-down approach. The beams are strained up to 2$\%$ thanks to the internal tensile stress of silicon nitride actuators, allowing a validation of the perturbation theory in high-strain conditions. The results are compared with the phonon deformation potentials (PDP) theory and the uncertainty caused by the various parameters found in the literature is discussed. The simulated strain-shift coefficients of -175.77 cm$^{-1}$ (resp. -400.85 cm$^{-1}$) and the experimental one of -160.99 cm$^{-1}$ (resp. -414.97 cm$^{-1}$) are found for the longitudinal optical LO (resp. transverse optical TO$_1$) mode, showing good agreement.