论文标题

$ P $ - 天体领域的形式

$p$-Forms on the Celestial Sphere

论文作者

Donnay, Laura, Esmaeili, Erfan, Heissenberg, Carlo

论文摘要

我们在任何维度上为$ p $ - 形式的字段构建了共形初级波函数(CPW),计算其标量产物,并在常规平面波和CPW模式扩展之间显示基础变化。我们还对相关的影子变换进行分析。对于$ p $ - 形式CPW的每个家族,我们观察到存在保形尺寸$δ= p $的纯仪表波形的存在,而阴影$ p $ - 此重量的形式仅在关键的时空维度值$ d = 2p+2 $中仅是纯仪表。然后,我们提供了一种系统的技术,可以根据区域方法获得$ \ mathscr i $接近的大$ r $渐近极限,该限制自然考虑了天体领域普通和接触术语的存在。在$ d = 4 $中,这使我们能够用共形初级语言重新启动标量和双重两种形式之间的联系。

We construct a basis of conformal primary wavefunctions (CPWs) for $p$-form fields in any dimension, calculating their scalar products and exhibiting the change of basis between conventional plane wave and CPW mode expansions. We also perform the analysis of the associated shadow transforms. For each family of $p$-form CPWs, we observe the existence of pure gauge wavefunctions of conformal dimension $Δ=p$, while shadow $p$-forms of this weight are only pure gauge in the critical spacetime dimension value $D=2p+2$. We then provide a systematic technique to obtain the large-$r$ asymptotic limit near $\mathscr I$ based on the method of regions, which naturally takes into account the presence of both ordinary and contact terms on the celestial sphere. In $D=4$, this allows us to reformulate in a conformal primary language the links between scalars and dual two-forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源