论文标题

从隐性规范中综合嵌套的关系查询:通过模型理论和证明理论

Synthesizing nested relational queries from implicit specifications: via model theory and via proof theory

论文作者

Benedikt, Michael, Pradic, Cécilia, Wernhard, Christoph

论文摘要

派生的数据集可以隐式或明确定义。隐式定义(数据集i的数据集i)是逻辑规范,涉及两套杰出的关系符号集。一组关系是针对“源数据” i的,而另一个关系是针对“接口数据”O。这样的规范是i的有效定义,如果规范的两个模型同意i同意i。相反,明确的定义是下面的转换(或“ query”),可以从beth theorem theorem senere的变体中产生o o cortsits convertits convertits convertits convertiss convertiss convertits。此外,可以有效地进行这种转换,鉴于在合适的证明系统中证明了隐式确定性的证明。我们证明了嵌套关系的类似的隐式对解释结果:嵌套关系的自然逻辑中给出的隐式定义可以转换为嵌套的关系计算(NRC)中的显式定义。我们首先为此结果提供了一个模型理论论点,这使得在NRC查询,解释,一种标准机制之间可能具有独立关注的其他连接,这是定义逻辑中结构到结构翻译的标准机制,以及在解释和暗示性之间与确定性“达到独特的同构”。后一种连接使用Gaifman的结果的变体,涉及“相对分类”的理论。我们还提供了一个证明理论的结果,该结果提供了有效的论点:从证明隐式确定性的证明,我们可以有效地产生NRC定义。这将涉及引入适当的证明系统,以用于嵌套集的推理,以及该系统的一些辅助Beth型结果。结果,我们可以根据NRC的观点有效提取NRC查询的重写,鉴于证明查询是由观点确定的证据。

Derived datasets can be defined implicitly or explicitly. An implicit definition (of dataset O in terms of datasets I) is a logical specification involving two distinguished sets of relational symbols. One set of relations is for the "source data" I, and the other is for the "interface data" O. Such a specification is a valid definition of O in terms of I, if any two models of the specification agreeing on I agree on O. In contrast, an explicit definition is a transformation (or "query" below) that produces O from I. Variants of Beth's theorem state that one can convert implicit definitions to explicit ones. Further, this conversion can be done effectively given a proof witnessing implicit definability in a suitable proof system. We prove the analogous implicit-to-explicit result for nested relations: implicit definitions, given in the natural logic for nested relations, can be converted to explicit definitions in the nested relational calculus (NRC). We first provide a model-theoretic argument for this result, which makes some additional connections that may be of independent interest, between NRC queries, interpretations, a standard mechanism for defining structure-to-structure translation in logic, and between interpretations and implicit to definability "up to unique isomorphism". The latter connection uses a variation of a result of Gaifman concerning "relatively categorical" theories. We also provide a proof-theoretic result that provides an effective argument: from a proof witnessing implicit definability, we can efficiently produce an NRC definition. This will involve introducing the appropriate proof system for reasoning with nested sets, along with some auxiliary Beth-type results for this system. As a consequence, we can effectively extract rewritings of NRC queries in terms of NRC views, given a proof witnessing that the query is determined by the views.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源