论文标题
机器学习在农业保险中的比例应用
Applications of Machine Learning for the Ratemaking in Agricultural Insurances
论文作者
论文摘要
本文评估了机器学习(ML),以建立新的保险计划的比例制定。为了使评估可行,我们确定了预期赔偿为保费。然后,我们使用ML使用最小变量集来预测赔偿。该分析模拟了在意大利引入的收入保险计划,即所谓的收入稳定工具(IST),作为一个案例研究,使用FADN的农场级数据从2008 - 2018年开始。我们使用三种ML工具,即Lasso,Elastic Net和Boosting预测了IST赔偿,该工具可以进行可变选择,并与保险调查中通常采用的广义线性模型(基线)进行比较。此外,实施了Tweedie分布来考虑赔偿功能的特殊性形状,其特征是零膨胀,无负值和不对称的脂肪尾。通过比较模型的计量经济学和经济表现来评估结果的鲁棒性。具体而言,ML使用少量稳定的回归器选择,并显着降低了信息的收集成本。但是,增强它使它能够获得最佳的经济表现,在最佳的最佳风险主题和实现良好的经济可持续性方面取得平衡。这些发现表明,如何成功地应用机器学习。这项研究代表了最早在农业保险中使用ML和Tweedie分销的研究之一,这表明其有可能克服多个问题的潜力。
This paper evaluates Machine Learning (ML) in establishing ratemaking for new insurance schemes. To make the evaluation feasible, we established expected indemnities as premiums. Then, we use ML to forecast indemnities using a minimum set of variables. The analysis simulates the introduction of an income insurance scheme, the so-called Income Stabilization Tool (IST), in Italy as a case study using farm-level data from the FADN from 2008-2018. We predicted the expected IST indemnities using three ML tools, LASSO, Elastic Net, and Boosting, that perform variable selection, comparing with the Generalized Linear Model (baseline) usually adopted in insurance investigations. Furthermore, Tweedie distribution is implemented to consider the peculiarity shape of the indemnities function, characterized by zero-inflated, no-negative value, and asymmetric fat-tail. The robustness of the results was evaluated by comparing the econometric and economic performance of the models. Specifically, ML has obtained the best goodness-of-fit than baseline, using a small and stable selection of regressors and significantly reducing the gathering cost of information. However, Boosting enabled it to obtain the best economic performance, balancing the most and most minor risky subjects optimally and achieving good economic sustainability. These findings suggest how machine learning can be successfully applied in agricultural insurance.This study represents one of the first to use ML and Tweedie distribution in agricultural insurance, demonstrating its potential to overcome multiple issues.