论文标题

超链齿轮在仿射复合曲线上的类似物

Analogues of hyperlogarithm functions on affine complex curves

论文作者

Enriquez, Benjamin, Zerbini, Federico

论文摘要

对于$ c $的光滑仿射复合曲线,代数$ \ Mathcal o__ {hol}(\ tilde c)$ holomorthic函数在其通用封面$ \ tilde c $上,在所有操作$ f \ int $ f \ int $ f f.ind $ f f.inde c $上都有独特的最低属于$ \ tilde c)$ $ f \ int $ f for p \ int $ ffff,而$ f \ int $ ffforcy(c)$ f \ int $ ffforc, $ c $的差异。我们将$ a_c $带有迭代集成图$ i_ {x_0}的图像:\ Mathrm {sh}(ω(c))\ to \ Mathcal o_ {hol}(\ tilde c)$基于任何点$ x_0 $ x_0 $ x_0 $ x_0 $ x_0 $ x_0 $ \\ tilde c $($ \ \ tilde c $)矢量空间以及与单位部分有关,就$ \ mathrm {aut}(\ tilde c/c)$($ \ mathcal o_ {hol}(h hol}(\ tilde c)$中等增长功能的动作)。我们表明,$ c $上的任何常规Maurer-Cartan(MC)元素$ j $ in $ c $具有拓扑上免费的lie代数超过$ \ mathrm h^1 _ {\ mathrm {\ mathrm {dr}}}(c)^*$,引起了$ a_c $ a_c $ a_c $的同态,$ \ nmatcal o(c)c) h^1 _ {\ mathrm {dr}}(c))$,其中$ \ mathcal o(c)$是$ c $上的常规函数​​的代数,从而导致subalgebra $ \ mathcal h_c(j)$ a_c $ a_c $ of $ a_c $(isomorphic of $ \ a_c $(isomorphic) H^1 _ {\ Mathrm {dr}}(c))$。我们还将MC元素$J_σ$与投影$ω(c)\的每个部分$σ$相关联与\ Mathrm H^1 _ {\ Mathrm {dr}}}(c)$;当$ c $具有$ 0 $的属时,我们将展示特定的$σ_0$,其中$ \ MATHCAL H_C(J_ {σ_0})$是Hyperlogarithm函数的代数(Poincaré,Lappo-Danilevsky)。

For $C$ a smooth affine complex curve, there is a unique minimal subalgebra $A_C$ of the algebra $\mathcal O_{hol}(\tilde C)$ of holomorphic functions on its universal cover $\tilde C$, which is stable under all the operations $f\mapsto \int fω$, for $ω$ in the space $Ω(C)$ of regular differentials on $C$. We identify $A_C$ with the image of the iterated integration map $I_{x_0} : \mathrm{Sh}(Ω(C))\to\mathcal O_{hol}(\tilde C)$ based at any point $x_0$ of $\tilde C$ (here $\mathrm{Sh}(-)$ denotes the shuffle algebra of a vector space), as well as with the unipotent part, with respect to the action of $\mathrm{Aut}(\tilde C/C)$, of a subalgebra of $\mathcal O_{hol}(\tilde C)$ of moderate growth functions. We show that any regular Maurer-Cartan (MC) element $J$ on $C$ with values in the topologically free Lie algebra over $\mathrm H^1_{\mathrm{dR}}(C)^*$ gives rise to an isomorphism of $A_C$ with $\mathcal O(C) \otimes\mathrm{Sh}(\mathrm H^1_{\mathrm{dR}}(C))$, where $\mathcal O(C)$ is the algebra of regular functions on $C$, leading to the assignment of a subalgebra $\mathcal H_C(J)$ of $A_C$ (isomorphic to $\mathrm{Sh}(\mathrm H^1_{\mathrm{dR}}(C))$) to any MC element. We also associate a MC element $J_σ$ to each section $σ$ of the projection $Ω(C)\to \mathrm H^1_{\mathrm{dR}}(C)$; when $C$ has genus $0$, we exhibit a particular section $σ_0$ for which $\mathcal H_C(J_{σ_0})$ is the algebra of hyperlogarithm functions (Poincaré, Lappo-Danilevsky).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源