论文标题
色α络合物
Chromatic Alpha Complexes
论文作者
论文摘要
在医学科学中的应用中,我们从拓扑的角度研究了欧几里得空间中的有限色集。基于图像,内核和焦点的持续同源性,我们设计了稳定的同源量词,这些量词描述了颜色类别混合的几何微观和宏观结构。这些可以使用Delaunay和Alpha Complexs的色变体有效地计算,并提供这些计算的代码。
Motivated by applications in the medical sciences, we study finite chromatic sets in Euclidean space from a topological perspective. Based on the persistent homology for images, kernels and cokernels, we design provably stable homological quantifiers that describe the geometric micro- and macro-structure of how the color classes mingle. These can be efficiently computed using chromatic variants of Delaunay and alpha complexes, and code that does these computations is provided.